Team:UPO-Sevilla/Project/Basic Flip Flop/Modeling/Basic Bistable

From 2011.igem.org

(Difference between revisions)
 
(7 intermediate revisions not shown)
Line 2: Line 2:
<html>
<html>
 +
 +
<script type="text/javascript">
 +
            ddmenuactual = 1;
 +
            $("#menuPBasic").addClass("TopMenuSelected");
 +
</script>
 +
         
                     <div id="principal">
                     <div id="principal">
                         <div class="main">
                         <div class="main">
Line 12: Line 18:
                                     <li><a href="/Team:UPO-Sevilla/Project/Overview" style="white-space: nowrap; float: left;">Project</a><ul></ul></li>
                                     <li><a href="/Team:UPO-Sevilla/Project/Overview" style="white-space: nowrap; float: left;">Project</a><ul></ul></li>
                                     <li><a href="/Team:UPO-Sevilla/Project/Basic_Flip_Flop" style="white-space: nowrap; float: left;">Basic Flip Flop</a><ul></ul></li>
                                     <li><a href="/Team:UPO-Sevilla/Project/Basic_Flip_Flop" style="white-space: nowrap; float: left;">Basic Flip Flop</a><ul></ul></li>
-
                                     <li><a href="/Team:UPO-Sevilla/Project/Basic_Flip_Flop/Modeling/Basic_Bistable" style="white-space: nowrap; float: left;">Modeling</a><ul></ul></li>
+
                                     <li><a href="/Team:UPO-Sevilla/Project/Basic_Flip_Flop/Modeling/Basic_Bistable" style="white-space: nowrap; float: left;">Mathematical Modeling</a><ul></ul></li>
                                     <li class="current"><a href="/Team:UPO-Sevilla/Project/Basic_Flip_Flop/Modeling/Basic_Bistable" style="white-space: nowrap; float: left;">Basic Bistable</a><ul></ul></li>
                                     <li class="current"><a href="/Team:UPO-Sevilla/Project/Basic_Flip_Flop/Modeling/Basic_Bistable" style="white-space: nowrap; float: left;">Basic Bistable</a><ul></ul></li>
                                      
                                      
                         </ul>
                         </ul>
-
                             <h1>Basic Bistable</h1>
+
                             <h1>Basic Flip-Flop</h1>
 +
 
 +
 
                              
                              
<h2>Introduction</h2>
<h2>Introduction</h2>
 +
<p>Firstly, we have developed a mathematical model of the evolution of the species involved in the basic flip-flop. This model is composed of a set of differential equations that relate the change of rate of the concentrarions of the different substances with the concentrations of rest of substances. These models have been then implemented and simulated using MATLAB and MATLAB's Simbiology.</p>
                             <p>To start with the model analysis, we show the reactions in which our plasmid is involved into the ‘E. Coli’ bacteria, and their kinetic laws. Due to the two expressions, each one must have the same rate law. Here we are showing a simplified analysis for every response:</p>
                             <p>To start with the model analysis, we show the reactions in which our plasmid is involved into the ‘E. Coli’ bacteria, and their kinetic laws. Due to the two expressions, each one must have the same rate law. Here we are showing a simplified analysis for every response:</p>
Line 25: Line 34:
                             <p>We have the expression of two different proteins, expressions that are regulated by following reactions:</p>
                             <p>We have the expression of two different proteins, expressions that are regulated by following reactions:</p>
-
                             <p><strong>TRANSCRIPTION:</strong> RNAp + Promoter &rarr; RNAp + Promoter + mRNA</p>
+
                             <p><strong>TRANSCRIPTION:</strong> <i>RNAp + Promoter &rarr; RNAp + Promoter + mRNA</i></p>
                             <p>The mRNA production will be described using Michaelis-Menten kinetics.</p>
                             <p>The mRNA production will be described using Michaelis-Menten kinetics.</p>
-
                             <p><strong>TRANSLATION:</strong> mRNA + Ribosomes &rarr; mRNA + Ribosomes + Repressor</p>
+
                             <p><strong>TRANSLATION:</strong> <i>mRNA + Ribosomes &rarr; mRNA + Ribosomes + Repressor</i></p>
                             <p>The Repressor production will be also modeled using Michaelis-Menten kinetics.</p>
                             <p>The Repressor production will be also modeled using Michaelis-Menten kinetics.</p>
-
                             <p><strong>REPRESSION:</strong> Promoter + n · Repressor &rarr; Promoter_Repressor<sub>n</sub></p>
+
                             <p><strong>REPRESSION:</strong> <i>Promoter + n · Repressor &rarr; Promoter_Repressor<sub>n</sub></i></p>
                             <p>Finally we use a Hill kinetics model for the transcription inhibition, which offers an approximation to the cooperative action.</p>
                             <p>Finally we use a Hill kinetics model for the transcription inhibition, which offers an approximation to the cooperative action.</p>
Line 57: Line 66:
                             <ul>
                             <ul>
-
                             <li>Promoter1</li>
+
                             <li>promoter1</li>
-
                             <li>Promoter2</li>
+
                             <li>promoter2</li>
                             <li>mRNA1</li>
                             <li>mRNA1</li>
                             <li>mRNA2</li>
                             <li>mRNA2</li>
-
                             <li>Repressor1/r1</li>
+
                             <li>repressor1/r1</li>
-
                             <li>Repressor2</li>
+
                             <li>repressor2</li>
                             <li>RNAp</li>
                             <li>RNAp</li>
-
                             <li>Ribosomes</li>
+
                             <li>ribosomes</li>
                            
                            
Line 96: Line 105:
                             </ul>
                             </ul>
-
<p><strong>Transcription + Repression 1:</strong></p>
+
<p>The reactions considered, and the rates of change of the produced species are listed here:</p>
-
<p>RNAp + Promoter1 + Repressor1 &rarr; RNAp + Promoter1 + Repressor1 + mRNA1</p>
+
                            <p><strong>Transcription + Repression 1:</strong></p>
 +
 
 +
<p><i>RNAp + promoter1 + repressor1 &rarr; RNAp + promoter1 + repressor1 + mRNA1</i></p>
                             <div class="center">
                             <div class="center">
-
                               <img src="https://static.igem.org/mediawiki/2011/7/78/UPO-BBEq1.png" alt="Diagram BB" />
+
                               <img src="https://static.igem.org/mediawiki/2011/7/78/UPO-BBEq1.png" alt="Transcription + Represion 1 Rate law" />
                             </div>
                             </div>
<p><strong>Transcription + Repression 2:</strong></p>
<p><strong>Transcription + Repression 2:</strong></p>
-
<p>RNAp + Promoter2 + Repressor2 &rarr; RNAp + Promoter2 + Repressor2 + mRNA2</p>
+
<p><i>RNAp + promoter2 + repressor2 &rarr; RNAp + promoter2 + repressor2 + mRNA2</i></p>
                             <div class="center">
                             <div class="center">
-
                               <img src="https://static.igem.org/mediawiki/2011/e/e6/UPO-BBEq2.png" alt="Diagram BB" />
+
                               <img src="https://static.igem.org/mediawiki/2011/e/e6/UPO-BBEq2.png" alt="Transcription + Represion 2 Rate" />
                             </div>
                             </div>
-
Rate law
+
 
<p><strong>Tanslation 1:</strong></p>
<p><strong>Tanslation 1:</strong></p>
 +
<p><i>mRNA1 + ribosomes &rarr; mRNA1 + ribosomes + repressor2 </i></p>
 +
 +
                            <div class="center">
 +
                              <img src="https://static.igem.org/mediawiki/2011/f/f3/UPP-BBEq3.png" alt="Translation 1 Rate" />
 +
                            </div>
<p><strong>Translation 2:</strong></p>
<p><strong>Translation 2:</strong></p>
 +
 +
<p><i>mRNA2 + ribosomes &rarr; mRNA2 + ribosomes + repressor1 </i></p>
 +
 +
                            <div class="center">
 +
                              <img src="https://static.igem.org/mediawiki/2011/d/d0/UPO-BBEq4.png" alt="Translation 2 Rate" />
 +
                            </div>
<p><strong>mRNA1/mRNA2 Degradation:</strong></p>
<p><strong>mRNA1/mRNA2 Degradation:</strong></p>
-
<p> mRNA1 &rarr; null</p>
+
<p><i> mRNA1 &rarr; null</i></p>
-
<p> mRNA2 &rarr; null</p>
+
<p><i> mRNA2 &rarr; null</i></p>
 +
 
 +
                            <div class="center">
 +
                              <img src="https://static.igem.org/mediawiki/2011/a/ac/UPO-BBEq5.png" alt="mRNA Degradation Rates" />
 +
                            </div>
<p><strong>Repressor1/Repressor2 Degradation:</strong></p>
<p><strong>Repressor1/Repressor2 Degradation:</strong></p>
-
<p> Repressor1 &rarr; null</p>
+
<p><i> repressor1 &rarr; null</i></p>
-
<p> Repressor2 &rarr; null</p>
+
<p><i> repressor2 &rarr; null</i></p>
 +
 
 +
                            <div class="center">
 +
                              <img src="https://static.igem.org/mediawiki/2011/c/c5/UPO-BBEq6.png" alt="Repressors Degradation Rates" />
 +
                            </div>
 +
 
 +
 
 +
<p>You can download the full Simbiology model of the Basic Flip-Flop here:</p>
 +
 
 +
<a href="https://static.igem.org/mediawiki/2011/9/9c/Basic_bistable.sbproj.zip" title="Basic Flip-Flop"><img style="margin: 0em 0em 1em 0em" class="imgcenter" width="200px" src="https://static.igem.org/mediawiki/2011/9/97/UPOSevillaDownloadIcon.png" title="Download Basic Flip-Flop"></a>
 +
 
 +
                          <h2>Simulations</h2>
 +
 
 +
<p>When we initially consider the same concentrations of each species, if we let the system evolve the simulation offers the following result:</p>
 +
 
 +
 
 +
 
 +
                            <div class="center">
 +
                              <img src="https://static.igem.org/mediawiki/2011/d/dd/Sim1.jpg" alt="Repressors Degradation Rates" />
 +
                            </div>
 +
 
 +
 
 +
<p>The <i>repressor2</i> wins the competition: this effect is due to the stronger expression of the <i>repressor2</i></p>
 +
 
 +
<p>But if we establish a higher initial concentration to the <i>repressor1 mRNA</i>:</p>
 +
 
 +
 
 +
 
 +
                            <div class="center">
 +
                              <img src="https://static.igem.org/mediawiki/2011/2/21/Sim2.jpg" alt="Repressors Degradation Rates" />
 +
                            </div>
 +
 
 +
 
 +
<p>Now, <i>repressor1</i> wins. We can see that the maximum level reached by <i>repressor1</i> is lower.</p>
 +
 
 +
 
 +
<p>With these simulations we can see how the system is able to work on two different points.</p>
 +
 
 +
 
 +
 
 +
                            <div class="center">
 +
                              <img src="https://static.igem.org/mediawiki/2011/5/51/BISTABLE.jpg" alt="Repressors Degradation Rates" />
 +
                            </div>
 +
 
 +
<p>Once the basic operation is described, next we consider the inclusions of actuators to modify the state of the flip-flop, in the <a href="/Team:UPO-Sevilla/Project/Basic_Flip_Flop/Modeling/Toggle_Switch">Toggle Switch</a> section.</p>
 +
 
                         </div>
                         </div>
                         <div class="left">
                         <div class="left">
-
                               </html>{{:Team:UPO-Sevilla/leftTemplateProject}}<html>
+
                               </html>{{:Team:UPO-Sevilla/leftTemplateProjectBasic}}<html>
 +
 
 +
                              <script type="text/javascript">
 +
                                          $("#menuVBMBasic").addClass("menuSelected");
 +
                              </script>
 +
 
                         </div>
                         </div>
</html>
</html>
{{:Team:UPO-Sevilla/footTemplate}}
{{:Team:UPO-Sevilla/footTemplate}}

Latest revision as of 22:03, 27 October 2011

Grey iGEM Logo UPO icon

Basic Flip-Flop

Introduction

Firstly, we have developed a mathematical model of the evolution of the species involved in the basic flip-flop. This model is composed of a set of differential equations that relate the change of rate of the concentrarions of the different substances with the concentrations of rest of substances. These models have been then implemented and simulated using MATLAB and MATLAB's Simbiology.

To start with the model analysis, we show the reactions in which our plasmid is involved into the ‘E. Coli’ bacteria, and their kinetic laws. Due to the two expressions, each one must have the same rate law. Here we are showing a simplified analysis for every response:

We have the expression of two different proteins, expressions that are regulated by following reactions:

TRANSCRIPTION: RNAp + Promoter → RNAp + Promoter + mRNA

The mRNA production will be described using Michaelis-Menten kinetics.

TRANSLATION: mRNA + Ribosomes → mRNA + Ribosomes + Repressor

The Repressor production will be also modeled using Michaelis-Menten kinetics.

REPRESSION: Promoter + n · Repressor → Promoter_Repressorn

Finally we use a Hill kinetics model for the transcription inhibition, which offers an approximation to the cooperative action.

Diagram

Diagram BB

Here we can see all the species involved in the model for the bistable.

Equations

We define the reactions and the parameters involved in the system.

The following list shows a summary of the species:

Species:

  • promoter1
  • promoter2
  • mRNA1
  • mRNA2
  • repressor1/r1
  • repressor2
  • RNAp
  • ribosomes

Parameters:

  • Km : Michaelis constant of transcription
  • Kmu: Michaelis constant of translation
  • δ: mRNA rate of degradation
  • λ: mRNA maximum rate of synthesis
  • k: Repressor rate of synthesis
  • Kiu: Dissociation constant of repression
  • γ: Cooperativity of inhibition by the repressor

Before describing the reactions’ equations, we describe the assumptions made:

  • Repression is modeled as an inhibition of the mRNA synthesis. Instead of considering the repression as a different process, we include this effect into the Michaelis-Menten equation as a modifier of the Michaelis constant Km, assuming that the protein binds competitively with the RNAp to the promoter site, and knowing that the repressor may form multimers.
  • Due to the high values of the RNAp and ribosomes concentration versus promoter concentration, we can assume that the Michaelis-Menten rate law may change into a mass action rate law. Although this assumption is valid for the transcription process, the rate constant changes his value according to the repressor level.

The reactions considered, and the rates of change of the produced species are listed here:

Transcription + Repression 1:

RNAp + promoter1 + repressor1 → RNAp + promoter1 + repressor1 + mRNA1

Transcription + Represion 1 Rate law

Transcription + Repression 2:

RNAp + promoter2 + repressor2 → RNAp + promoter2 + repressor2 + mRNA2

Transcription + Represion 2 Rate

Tanslation 1:

mRNA1 + ribosomes → mRNA1 + ribosomes + repressor2

Translation 1 Rate

Translation 2:

mRNA2 + ribosomes → mRNA2 + ribosomes + repressor1

Translation 2 Rate

mRNA1/mRNA2 Degradation:

mRNA1 → null

mRNA2 → null

mRNA Degradation Rates

Repressor1/Repressor2 Degradation:

repressor1 → null

repressor2 → null

Repressors Degradation Rates

You can download the full Simbiology model of the Basic Flip-Flop here:

Simulations

When we initially consider the same concentrations of each species, if we let the system evolve the simulation offers the following result:

Repressors Degradation Rates

The repressor2 wins the competition: this effect is due to the stronger expression of the repressor2

But if we establish a higher initial concentration to the repressor1 mRNA:

Repressors Degradation Rates

Now, repressor1 wins. We can see that the maximum level reached by repressor1 is lower.

With these simulations we can see how the system is able to work on two different points.

Repressors Degradation Rates

Once the basic operation is described, next we consider the inclusions of actuators to modify the state of the flip-flop, in the Toggle Switch section.