Team:KULeuven/Modeling

From 2011.igem.org

(Difference between revisions)
 
(42 intermediate revisions not shown)
Line 4: Line 4:
<title>KULeuven iGEM 2011</title>
<title>KULeuven iGEM 2011</title>
-
<link rel="stylesheet" type="text/css" href="http://www.shbts.nl/igem/style/main02.css" media="screen" />
+
<link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/main02.css" media="screen" />
-
<link rel="stylesheet" type="text/css" href="http://www.shbts.nl/igem/style/lightbox.css" media="screen" />
+
<link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/lightbox.css" media="screen" />
<link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'>
<link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/prototype.js"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/prototype.js"></script>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/scriptaculous.js?load=effects,builder"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/scriptaculous.js?load=effects,builder"></script>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/lightbox.js"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/lightbox.js"></script>
<script src="http://widgets.twimg.com/j/2/widget.js"></script>
<script src="http://widgets.twimg.com/j/2/widget.js"></script>
Line 44: Line 44:
<body>
<body>
-
<img src="http://www.shbts.nl/igem/images/bg_team02.jpg" class="bg_team">
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/bg_team02.jpg" class="bg_team">
-
<div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http://www.shbts.nl/igem/images/logo.png" border="0" width="100" height="100"></a></div>
+
<div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/logo.png" border="0" width="100" height="100"></a></div>
-
<div id="logo_igem"><object data="http://www.shbts.nl/igem/html/igemlogo.html" style="overflow:hidden;" type="text/html" width="99" height="80"></object></div>
+
<div id="logo_igem"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/igemlogo.html" style="overflow:hidden;" type="text/html" width="99" height="80"></object></div>
<div id="twitter_widget">
<div id="twitter_widget">
-
<a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http://www.shbts.nl/igem/images/close_button.png" width="10" height="10" style="margin: 0 0 0 140px;" alt="close"></a>
+
<a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/close_button.png" width="10" height="10" style="margin: 0 0 0 140px;" alt="close"></a>
<script>
<script>
new TWTR.Widget({
new TWTR.Widget({
Line 84: Line 84:
</div>
</div>
-
<div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http://www.shbts.nl/igem/images/twitter_allmedia.png" width="120" height="35" border="0" /></a></div>
+
<div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/twitter_allmedia.png" width="120" height="35" border="0" /></a></div>
-
<div id="social_icons"><object data="http://www.shbts.nl/igem/html/social_icons.html" style="overflow:hidden;" type="text/html" width="110" height="24"></object></div>
+
<div id="social_icons"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/social_icons.html" style="overflow:hidden;" type="text/html" width="110" height="24"></object></div>
<div id="centeredmenu_bg"></div>
<div id="centeredmenu_bg"></div>
Line 96: Line 96:
</ul></li>
</ul></li>
-
<li class="on"><a href="https://2011.igem.org/Team:KULeuven/Project">Project</a>
+
<li class="off"><a href="https://2011.igem.org/Team:KULeuven/Description">Project</a>
<ul>
<ul>
<li><a href="#"></a></li>
<li><a href="#"></a></li>
-
<li><a href="https://2011.igem.org/Team:KULeuven/Project">Summary</a></li>
+
<li><a href="https://2011.igem.org/Team:KULeuven/Description">Description</a></li>
-
<li><a href="https://2011.igem.org/Team:KULeuven/Details">Extended</a><li>
+
<li><a href="https://2011.igem.org/Team:KULeuven/Modeling" style="border-bottom:2px solid #000; color:#000;">Modeling</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Modeling" style="border-bottom:2px solid #000; color:#000;">Modeling</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Thermodynamics">Thermodynamics</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Applications">Applications</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Biobricks">Biobricks</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Biobricks">Biobricks</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Notebook">Notebook</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Notebook">Notebook</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Results">Results</a></li>
</ul></li>
</ul></li>
Line 124: Line 126:
<li><a href="https://2011.igem.org/Team:KULeuven/Ethics">Ethics</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Ethics">Ethics</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Safety">Safety</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Safety">Safety</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Law&Patents">Law&Patents</a></li>
</ul></li>
</ul></li>
Line 150: Line 153:
<br><h2>1. Description of the whole system</h2>
<br><h2>1. Description of the whole system</h2>
-
To make predictions for are plasmid transformed E.coli, a structured segregated model is designed in Simbiology. A graphical representation of the model was build in the block diagram editor . Afterwards reaction equations and parameters were added.  
+
To predict and optimize the behaviour of E.D. Frosti, we constructed a model to mathematical describe the biological system. The system can be divided into three subsystems, representing the freeze, antifreeze and cell death mechanism of the bacterial cell. Lactose will induce the freeze system, resulting in the production of the ice nucleating protein (INP). In addition, lactose will repress the antifreeze system, preventing the formation of the antifreeze protein (AFP). On the other hand, L-arabinose is the inducing compound of the antifreeze system and the repressing compound of the freeze system. Upon application in the environment, a cell death mechanism will kill the cells when low temperatures are applied. We designed one model for the whole system and 3 models for 3 subsystems. The 3 subsystems are antifreeze, freeze and cell death. For more information about these 3 subsystems, we refer to the extended <a href="https://2011.igem.org/Team:KULeuven/Details"> project description</a> and the 3 modelling pages: <a href="https://2011.igem.org/Team:KULeuven/Freeze"> freeze</a>, <a href="https://2011.igem.org/Team:KULeuven/Antifreeze"> antifreeze</a> and <a href="https://2011.igem.org/Team:KULeuven/Death">cell death</a>. <br><br>
-
We designed one model for the whole system and 3 models for 3 subsystems. The 3 subsystems are antifreeze, freeze and cell death. For more information about these 3 subsystems, we refer to the extended <a href="https://2011.igem.org/Team:KULeuven/Details"> project description</a> and the 3 modelling pages: <a href="https://2011.igem.org/Team:KULeuven/Freeze"> freeze</a>, <a href="https://2011.igem.org/Team:KULeuven/Antifreeze"> antifreeze</a> and <a href="https://2011.igem.org/Team:KULeuven/Death">cell death</a>.
+
 
-
<br><br>
+
To make predictions for the E.D. Frosti system, a structured segregated model is designed in the MATLAB <a href="http://www.mathworks.nl/products/simbiology/index.html"> Simbiology Toolbox</a> . The kinetic actions (transcription, translation, complexation, ...) that take place in the subsystems can be described by Ordinary Differential Equations (ODEs) like Mass-Action laws, Hill Kinetic laws,<a href="http://www.inrets.fr/ur/lte/publications/publications-pdf/Maurin-publi/Hill-Goutelle,MMet%20+.pdf "> [1]</a> and so on. An extensive search for parameters involved in these ODEs has resulted in the discovery of almost all necessary quantities for the simulations. To summarize the model, we made a PDF-file containing all the ODEs involved in modeling the subsystem, and a file with a clear overview of the used parameters <a href="https://2008.igem.org/Team:KULeuven/Software/Simbiology2LaTeX">[2]</a>. <br><br>
 +
 
 +
<center>
 +
 
 +
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/celldeath_scheme.jpg"><br><br>
 +
 
 +
</center>
<br><h2>2. Full Model </h2>
<br><h2>2. Full Model </h2>
-
There are in total 5 different kinetic equations we used in the model
 
-
Transcription equation
 
-
For most promoters, hill kinetics is used, it is a way of quantitatively describing cooperative binding processes, it was developed for hemoglobin in 1913. A Hill coefficient (n) is a measure for the cooperativity.
 
-
Translation equation
 
-
RNA degradation
 
-
Protein degration
 
-
Assimiliation
 
-
FULL MODEL
 
-
<br><br>
 
-
<br><h2>3. Simulation tests</h2>
+
<center>
-
Different amounts of lactose and arabinose are used to check the efficiency of the model. Lactose is the inducing compound involved in the freeze system, which can result in the production of ice nucleating protein (INP), while antifreeze system is repressed by lactose. On the other hand, L-arabinose is repressing the system by inducing the production of LuxI, and yet, in the antifreeze model, AFP production is induced by it.
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/full_model.jpg" border="0"><br><br>
-
<br><br>
+
-
The results reveal that the kinetics of synthesis of AFP and CeaB are much higher than that of INP formation, for example, the difference of the concentrations of AFP and INP can reach 10E15 in Fig. 1. The main reason is the efficiency of the formation of AHL complex. From mathematical modeling, we can find INP gene functions after AHL complex, and they are in same series reaction. Therefore, the low activity of AHL directly leads to the limited amount of INP formation.
+
</center>
-
<br><br>
+
-
To stimulate the INP production, we can increase the amount of lactose, e.g. 100 for lactose and 1 for arabinose (Fig.2). As a result, the INP production dramatically increases by 10E14.
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/full_model.zip">Click here to download the full model</a><br><br>
-
<br><br>
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/kinetic_parameters.pdf"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/pdf_icon.jpg"> Kinetic parameters</a><br><br>
-
!! I AM FIG1.picture  !!
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/reference.pdf"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/pdf_icon.jpg"> Reference</a>
-
<br><br>
+
-
!! I AM FIG2.picture  !!
+
<br><h2>3. Simulation tests</h2>
-
<br><br>
+
-
<br><h2>4. Sensitivity Analysis</h2>
+
Simulations with different initial amounts of lactose and arabinose were done to check the efficiency of the dual inhibition system. When both arabinose and lactose are present, AFP production as well as INP production should be inhibited. However, the results reveal that there is no inhibition of AFP when the concentration of lactose and arabinose are both set to 1. The production rates of AFP and CeaB are much higher than that of INP formation (Figure 1). The main reason for the difference in protein production is the formation of LuxR-AHL complex, which is a fast reaction compared to other reactions in the system. The LuxR-AHL complex stimulates AFP production and inhibits INP production. Therefore, the rate of AFP production is much higher than the rate of INP production. In addition, the inhibition of AFP production is much lower than the inhibition of INP production.<br><br>
-
<br><br>
+
The dual inhibition system can be improved by further parameter optimization or structural system changes based on simulations by the model. At the moment, this problem has no effect on the proper working of the E.D. Frosti system, which is the production of AFP or INP when one stimulus is present. We never want to create AFP and INP at the same time.<br><br>
 +
 
 +
<center>
 +
 
 +
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure01_overview.jpg"><br><br>
 +
Figure 1: amount of lactose-arabinose  1-1, huge difference between production of AFP and INP<br><br>
 +
 
 +
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure02_overview.jpg"><br><br>
 +
Figure 2: amount of lactose-arabinose 100-1 after 100 seconds <br><br>
 +
 
 +
</center>
-
<br><h2>5. Kinetic Constants</h2>
+
<h2>4. Sensitivity Analysis and parameter scan</h2>
-
<p>The parameters used in this model are:</p>
+
Sensitivity analysis (SA) is used to examine how the activity of the gene expression in the output of each model can be attributed to different kinetic parameters in the inputs of the model. We can also use this technique to determine the effects of changing variable in the model. The results of sensitivity analysis for each submodel are shown in the subsystem pages.
 +
<br><br><br><br>
-
<table class="parameter">
 
-
<tr>
 
-
<th>Parameter</th>
 
-
<th style="width:80px;">Value</th>
 
-
<th>Description</th>
 
-
<th>Reference</th>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/f/f2/LacI_concentration.png' style='height:22px;'></td>
 
-
<td>0</td>
 
-
<td>NA</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td>dRNA_LuxR </td>
 
-
<td>0.00227</td>
 
-
<td>did not find this value</td>
 
-
<td>[1]</td>
 
-
</tr>
 
-
<tr>
 
-
<td>dLuxR</td>
 
-
<td>1e-3 - 1e-4 [per sec+D4] (used in model: 0,0005)</td>
 
-
<td>http://parts.mit.edu/igem07/index.php/ETHZ/Engineering</td>
 
-
<td>[2]</td>
 
-
</tr>
 
-
<tr><td>dRNA_LuxR </td><td>0.00227 s-1 </td><td>did not find this value</td><td>[1]</td></tr>
 
-
<tr><td>dLuxR</td><td>1e-3 - 1e-4 [per sec+D4] (used in model: 0,0005)</td><td>http://parts.mit.edu/igem07/index.php/ETHZ/Engineering</td><td>[2]</td></tr>
 
-
<tr><td>dLuxI</td><td>2.31e-3 [per sec] </td><td>http://parts.mit.edu/igem07/index.php/ETHZ/Engineering</td><td>[3] </td></tr>
 
-
<tr><td>dHSL </td><td>1.02E-6 s-1 </td><td>very stable in the medium, average lifetime of 185h </td><td>[4] </td></tr>
 
-
<tr><td>dLuxR_HSL </td><td>0.0010 s-1 </td><td>complex of HSL and LuxR degrades, giving back HSL </td><td>(estimation)</td></tr>
 
-
<tr><td>Association/Dissociation/Reaction Rates</td><td></td><td></td><td></td></tr>
 
-
<tr><td>kass (HSL+LuxR) </td><td>0.002372 s-1  (used in model 100= 0,002372*42100, why? to remove molar dimension)</td><td>association rate of HSL with LuxR (estimate from KM but recalculated to remove molar dimension) </td><td>[5] </td></tr>
 
-
<tr><td>kdiss (HSL-LuxR) </td><td>1.0 s-1 (used in model 42100, why?)</td><td>dissociation rate of the HSL-LuxR complex (estimate from KM) </td><td>[5] </td></tr>
 
-
<tr><td>kass (HSL+lactonase) </td><td>0.002372 s-1 (used in model 0,1, why?)</td><td>association rate of HSL with lactonase (estimate from KM but recalculated to remove molar dimension) </td><td>[6] </td></tr>
 
-
<tr><td>kdiss (HSL-lactonase) </td><td>4470.0 s-1 (used in model 188428.3, why?)</td><td>dissociation rate of the HSL-lactonase complex (estimate from Kd) </td><td>[6] </td></tr>
 
-
<tr><td>kcat (HSL>>hydroxy-acid) </td><td>29 s-1 (same in model)</td><td>lactonase catalyzed transformation of HSL to a hydroxy-acid </td><td>[6] </td></tr>
 
-
<tr><td>Dissociation Constants</td><td></td><td></td><td></td></tr>
 
-
<tr><td>KHSL_LuxR </td><td>1E-6 [M] </td><td>HSL binding to LuxR</td><td>[5]</td></tr>
 
-
<tr><td>Transcription Rates</td><td></td><td></td><td></td></tr>
 
-
<tr><td>kmRNA_luxR</td><td>0.025</td><td>estimation ( constitutive promotor ?)</td><td></td></tr>
 
-
<tr><td>kmRNA_ompA_AFP</td><td>0.025</td><td></td><td></td></tr>
 
-
<tr><td>kmRNA_luxI</td><td>0.025</td><td></td><td></td></tr>
 
-
<tr><td>kmRNA_cIrep</td><td>0.025</td><td></td><td></td></tr>
 
-
<tr><td>kmRNA_melA</td><td>0.025</td><td></td><td></td></tr>
 
-
<tr><td>Translation Rates</td><td></td><td></td><td></td></tr>
 
-
<tr><td>kluxR translation</td><td>0.556 s-1 (0.03888888 in model?)</td><td>Translation rate for LuxR, B0034 RBS (relative efficiency 1.0) </td><td>[6]</td></tr>
 
-
<tr><td>kluxI translation</td><td>0.167 s-1</td><td>translation rate for B0032 RBS [11]</td><td>[7] </td></tr>
 
-
<tr><td>Hill cooperativity</td><td></td><td></td><td></td></tr>
 
-
<tr><td>nluxR (luxR activator)</td><td>2</td><td>[10] </td><td>[2] </td></tr>
 
-
<tr><td>nAHL (AHL-luxR activator)</td><td>1</td><td>[10]</td><td>[8] </td></tr>
 
-
<tr><td></td><td></td><td></td><td></td></tr>
 
-
<tr><td>nHSL_LuxR </td><td>2.08</td><td></td><td></td></tr>
 
-
<tr><td>CeaB transcription</td><td>0,025</td><td></td><td></td></tr>
 
-
<tr><td>CeaB mRNA degradation</td><td>0,002311</td><td></td><td></td></tr>
 
-
<tr><td></td><td></td><td></td><td></td></tr>
 
-
<tr><td>hybrid promotor kinetics</td><td></td><td></td><td>[9]</td></tr>
 
-
<tr><td></td><td></td><td></td><td></td></tr>
 
-
<tr><td>k_transcr</td><td>0.003</td><td></td><td></td></tr>
 
-
<tr><td>Km</td><td>0.1099</td><td></td><td></td></tr>
 
-
<tr><td>vol</td><td>0,000000000000001</td><td></td><td></td></tr>
 
-
<tr><td>N</td><td>6,023E+29</td><td></td><td></td></tr>
 
-
<tr><td>hill</td><td>2.08</td><td>hil coefficient</td><td></td></tr>
 
-
<tr><td>Km_luxR</td><td>0.00000405</td><td></td><td></td></tr>
 
-
<tr><td>k_l</td><td>0.000504</td><td></td><td></td></tr>
 
-
<tr><td></td><td></td><td></td><td></td></tr>
 
-
<tr><td></td><td></td><td></td><td></td></tr>
 
-
<tr><td>other: protein degradations</td><td>0.001</td><td>estimation</td><td></td></tr>
 
-
<tr><td>other: mRNA degrade</td><td>0.0025</td><td>estimation</td><td></td></tr>
 
-
<tr><td>all other translation</td><td>0.167</td><td>same as kLuxI translation</td><td>[7]</td></tr>
 
-
<tr><td>all other transcription</td><td>0.025</td><td>constitutive promotor value</td><td>[9] </td></tr>
 
-
</table>
 
-
<div id="citation_box">
 
-
<p id="references">References</p>
 
-
<ol>
 
-
<li><i>J.A. Bernstein et al., “Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, Jul. 2002, pp. 9697–9702. </i>
 
-
<li><i>"Systems analysis of a quorum sensing network: Design constraints imposed by the functional requirements, network topology and kinetic constants", Biosystems 83(2-3):178-187, 2004</i>
 
-
<li><i>Tuttle L.M., Salis H., Tomshine J., and Kaznessis Y.N., "Model-Driven Designs of an Oscillating Gene Network", Biophysical Journal, vol. 89, no. 6, pp. 3873--3883, 2005.</i>
 
-
<li><i>Y. Wang and J.R. Leadbetter, “Rapid Acyl-Homoserine Lactone Quorum Signal Biodegradation in Diverse Soils,” Appl. Environ. Microbiol., vol. 71, Mar. 2005, pp. 1291-1299. </i>
 
-
<li><i>N. Qin et al., “Analysis of LuxR Regulon Gene Expression during Quorum Sensing in Vibrio fischeri,” J. Bacteriol., vol. 189, Jun. 2007, pp. 4127-4134.</i>
 
-
<li><i>L. Wang et al., “Specificity and enzyme kinetics of the quorum-quenching AHL-lactonase,” J. Biol. Chem., Jan. 2004, p. M311194200.</i>
 
-
<li><i>http://partsregistry.org/Part:BBa_B0032</i>
 
-
<li><i>Parameter Estimation for Two Synthetic Gene Networks: A Case Study", ICASSP 5:769-772, 2005</i>
 
-
<li><i>https://2008.igem.org/Team:KULeuven/Model/CellDeath</i>
 
-
<ol>
 
</div>
</div>

Latest revision as of 12:45, 27 October 2011

KULeuven iGEM 2011

close
overview     Freeze     Antifreeze     Cell Death


Modeling Overview


1. Description of the whole system

To predict and optimize the behaviour of E.D. Frosti, we constructed a model to mathematical describe the biological system. The system can be divided into three subsystems, representing the freeze, antifreeze and cell death mechanism of the bacterial cell. Lactose will induce the freeze system, resulting in the production of the ice nucleating protein (INP). In addition, lactose will repress the antifreeze system, preventing the formation of the antifreeze protein (AFP). On the other hand, L-arabinose is the inducing compound of the antifreeze system and the repressing compound of the freeze system. Upon application in the environment, a cell death mechanism will kill the cells when low temperatures are applied. We designed one model for the whole system and 3 models for 3 subsystems. The 3 subsystems are antifreeze, freeze and cell death. For more information about these 3 subsystems, we refer to the extended project description and the 3 modelling pages: freeze, antifreeze and cell death.

To make predictions for the E.D. Frosti system, a structured segregated model is designed in the MATLAB Simbiology Toolbox . The kinetic actions (transcription, translation, complexation, ...) that take place in the subsystems can be described by Ordinary Differential Equations (ODEs) like Mass-Action laws, Hill Kinetic laws, [1] and so on. An extensive search for parameters involved in these ODEs has resulted in the discovery of almost all necessary quantities for the simulations. To summarize the model, we made a PDF-file containing all the ODEs involved in modeling the subsystem, and a file with a clear overview of the used parameters [2].




2. Full Model



Click here to download the full model

Kinetic parameters

Reference

3. Simulation tests

Simulations with different initial amounts of lactose and arabinose were done to check the efficiency of the dual inhibition system. When both arabinose and lactose are present, AFP production as well as INP production should be inhibited. However, the results reveal that there is no inhibition of AFP when the concentration of lactose and arabinose are both set to 1. The production rates of AFP and CeaB are much higher than that of INP formation (Figure 1). The main reason for the difference in protein production is the formation of LuxR-AHL complex, which is a fast reaction compared to other reactions in the system. The LuxR-AHL complex stimulates AFP production and inhibits INP production. Therefore, the rate of AFP production is much higher than the rate of INP production. In addition, the inhibition of AFP production is much lower than the inhibition of INP production.

The dual inhibition system can be improved by further parameter optimization or structural system changes based on simulations by the model. At the moment, this problem has no effect on the proper working of the E.D. Frosti system, which is the production of AFP or INP when one stimulus is present. We never want to create AFP and INP at the same time.



Figure 1: amount of lactose-arabinose 1-1, huge difference between production of AFP and INP



Figure 2: amount of lactose-arabinose 100-1 after 100 seconds

4. Sensitivity Analysis and parameter scan

Sensitivity analysis (SA) is used to examine how the activity of the gene expression in the output of each model can be attributed to different kinetic parameters in the inputs of the model. We can also use this technique to determine the effects of changing variable in the model. The results of sensitivity analysis for each submodel are shown in the subsystem pages.