Team:KULeuven/Death

From 2011.igem.org

(Difference between revisions)
 
(16 intermediate revisions not shown)
Line 4: Line 4:
<title>KULeuven iGEM 2011</title>
<title>KULeuven iGEM 2011</title>
-
<link rel="stylesheet" type="text/css" href="http://www.shbts.nl/igem/style/main02.css" media="screen" />
+
<link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/main02.css" media="screen" />
-
<link rel="stylesheet" type="text/css" href="http://www.shbts.nl/igem/style/lightbox.css" media="screen" />
+
<link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/lightbox.css" media="screen" />
<link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'>
<link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/prototype.js"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/prototype.js"></script>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/scriptaculous.js?load=effects,builder"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/scriptaculous.js?load=effects,builder"></script>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/lightbox.js"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/lightbox.js"></script>
<script src="http://widgets.twimg.com/j/2/widget.js"></script>
<script src="http://widgets.twimg.com/j/2/widget.js"></script>
Line 44: Line 44:
<body>
<body>
-
<img src="http://www.shbts.nl/igem/images/bg_team02.jpg" class="bg_team">
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/bg_team02.jpg" class="bg_team">
-
<div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http://www.shbts.nl/igem/images/logo.png" border="0" width="100" height="100"></a></div>
+
<div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/logo.png" border="0" width="100" height="100"></a></div>
-
<div id="logo_igem"><object data="http://www.shbts.nl/igem/html/igemlogo.html" style="overflow:hidden;" type="text/html" width="99" height="80"></object></div>
+
<div id="logo_igem"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/igemlogo.html" style="overflow:hidden;" type="text/html" width="99" height="80"></object></div>
<div id="twitter_widget">
<div id="twitter_widget">
-
<a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http://www.shbts.nl/igem/images/close_button.png" width="10" height="10" style="margin: 0 0 0 140px;" alt="close"></a>
+
<a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/close_button.png" width="10" height="10" style="margin: 0 0 0 140px;" alt="close"></a>
<script>
<script>
new TWTR.Widget({
new TWTR.Widget({
Line 84: Line 84:
</div>
</div>
-
<div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http://www.shbts.nl/igem/images/twitter_allmedia.png" width="120" height="35" border="0" /></a></div>
+
<div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/twitter_allmedia.png" width="120" height="35" border="0" /></a></div>
-
<div id="social_icons"><object data="http://www.shbts.nl/igem/html/social_icons.html" style="overflow:hidden;" type="text/html" width="110" height="24"></object></div>
+
<div id="social_icons"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/social_icons.html" style="overflow:hidden;" type="text/html" width="110" height="24"></object></div>
<div id="centeredmenu_bg"></div>
<div id="centeredmenu_bg"></div>
Line 145: Line 145:
<div id="modeling_submenu"><a href="https://2011.igem.org/Team:KULeuven/Modeling">overview</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Freeze">Freeze</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Antifreeze">Antifreeze</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Death" style="color:#000; border-bottom:2px solid #000;">Cell Death</a></div>
<div id="modeling_submenu"><a href="https://2011.igem.org/Team:KULeuven/Modeling">overview</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Freeze">Freeze</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Antifreeze">Antifreeze</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Death" style="color:#000; border-bottom:2px solid #000;">Cell Death</a></div>
 +
<br><br>
<h3>Modeling Celldeath</h3>
<h3>Modeling Celldeath</h3>
Line 157: Line 158:
<center>
<center>
-
<img src="http://www.shbts.nl/igem/images/modeling/celldeath_scheme.jpg"><br><br>
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/celldeath_scheme.jpg"><br><br>
</center>
</center>
-
<img src="http://www.shbts.nl/igem/images/modeling/biobrick_celldeath.jpg"><br><br>
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/biobrick_celldeath.jpg"><br><br>
-
The promoters for production of the ribolock Colicin E2 operon (Bba_K131009) are two hybrid promoters: pLac-LuxR promoter and pLux-CI promoter. We describe  the promoter kinetics in this subsystem with simplified mass equations. This is a simplification because hill kinetics will approach better the transcription in vivo than mass equations. In the full model, hill kinetics is applied.<br><br>
+
The promoters for production of the ribolock Colicin E2 operon are two hybrid promoters: pLac-LuxR promoter and pLux-CI promoter. We describe  the promoter kinetics in this subsystem with simplified mass equations. This is a simplification because hill kinetics will approach better the transcription in vivo than mass equations. In the full model, hill kinetics is applied.<br><br>
<center>
<center>
Line 169: Line 170:
<table>
<table>
  <tr>
  <tr>
-
   <td align="center"><img src="http://www.shbts.nl/igem/images/modeling/figure1_hybrid_promotor pLac-luxr.png"></td>
+
   <td align="center"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure1_hybrid_promotor pLac-luxr.png"></td>
   <td width="100"></td>
   <td width="100"></td>
-
   <td align="center"><img src="http://www.shbts.nl/igem/images/modeling/figure2_hybrid_promotor plux-cI.png"></td>
+
   <td align="center"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure2_hybrid_promotor plux-cI.png"></td>
  </tr>
  </tr>
  <tr>
  <tr>
Line 182: Line 183:
</center>
</center>
-
<a href="http://www.shbts.nl/igem/images/modeling/ODEcelldeath.pdf"><img src="http://www.shbts.nl/igem/images/modeling/pdf_icon.jpg"> ODE</a><br><br>
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/ODEcelldeath.pdf"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/pdf_icon.jpg"> ODE</a><br><br>
 +
 
-
<br><p>PARAMETER TABLE
 
<br><br>
<br><br>
Line 192: Line 193:
<center>
<center>
-
<img src="http://www.shbts.nl/igem/images/modeling/celldeath_scheme_model.jpg"><br><br>
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/celldeath_scheme_model.jpg" rel="lightbox" title="Celldeath model"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/celldeath_scheme_model_s.jpg" border="0"></a><br><br>
</center>
</center>
-
2011celldeath.sbproj<br><br>
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/model_celldeath.zip">Click here to download the Celldeath model</a><br><br>
Line 202: Line 203:
<br><p>We made a simulation in such a way that the ribokey-RNA is present at a constant value (figure 3). With this assumption, the only variable in the production for CeaB would be CeaB mRNA which linearly increases. Initially the production of CeaB is increasing non-linearly, but after a certain amount of time CeaB production becomes linear (figure 4); at that moment the degradation of CeaB is becoming important as well. Production of CeaB is the rate-limiting reaction.
<br><p>We made a simulation in such a way that the ribokey-RNA is present at a constant value (figure 3). With this assumption, the only variable in the production for CeaB would be CeaB mRNA which linearly increases. Initially the production of CeaB is increasing non-linearly, but after a certain amount of time CeaB production becomes linear (figure 4); at that moment the degradation of CeaB is becoming important as well. Production of CeaB is the rate-limiting reaction.
-
<br><p>Here, the input of lactose or arabinose is assumed to be constant. To improve this model, it could be updated with a varying input for lactose or arabinose. Also a temperature-varying parameter will be necessary, because the promoter we use is temperature sensitive.
+
<br><p>Here, the input of lactose or arabinose is assumed to be constant. To improve this model, it could be updated with a varying input for lactose or arabinose. Also a temperature-varying parameter will be necessary, because the promoter we use is temperature sensitive.<br><br>
-
<br><p>FIGURE 3: ribokey-RNA value hold constant, increase of CeaB
+
<center>
-
<br><p>FIGURE 4: Eventually CeaB concentration increases linearly with time
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure3_simulation10s.png"><br><br>
-
<br><br>
+
 +
FIGURE 3: ribokey-RNA value hold constant, increase of CeaB<br><br>
 +
 +
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure4_simulation1000s.png"><br><br>
 +
 +
FIGURE 4: Eventually CeaB concentration increases linearly with time<br><br>
 +
 +
</center>
-
<br><h2>4. Sensitivity analysis</h2>
+
<h2>4. Sensitivity analysis</h2>
<br><p>In these graphs, the 'parameters'-axis shows the parameters that are varied in the sensitivity analysis, while the ones along the states axis are the ones monitored as output. The z-axis is a measure for the sensitivity of the parameter under study.  
<br><p>In these graphs, the 'parameters'-axis shows the parameters that are varied in the sensitivity analysis, while the ones along the states axis are the ones monitored as output. The z-axis is a measure for the sensitivity of the parameter under study.  
Line 217: Line 224:
<br><p>In nature the transcription parameters will be important for a longer time, but with our simplified model the sensitivity of degradation parameters is already more important than transcription parameters after 1000s.
<br><p>In nature the transcription parameters will be important for a longer time, but with our simplified model the sensitivity of degradation parameters is already more important than transcription parameters after 1000s.
-
<br><p>For optimizing the system in future, we suggest to rebuild the promoter sequence to become higher value for transcription parameters. Another possibility is to lower the degradation parameters by increasing stability of the CeaB protein. The parameter scan figures display the results of a possible variation in these parameters.
+
<br><p>For optimizing the system in future, we suggest to rebuild the promoter sequence to become higher value for transcription parameters. Another possibility is to lower the degradation parameters by increasing stability of the CeaB protein. The parameter scan figures display the results of a possible variation in these parameters.<br><br>
-
<br><p>FIGURE 5: sensitivity at 10s
+
<center>
-
<br><p>FIGURE 6: sensitivity at 100s
+
<table>
 +
<tr>
 +
  <td align="center"><a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure5_sensitivity10s_2.png" rel="lightbox" title="FIGURE 5: sensitivity at 10s"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure5_sensitivity10s_2_small.png"></a></td>
 +
  <td width="100"></td>
 +
  <td align="center"><a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure6_sensitivity100s_2.png" rel="lightbox" title="FIGURE 6: sensitivity at 100s"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure6_sensitivity100s_2_small.png"></a></td>
 +
</tr>
 +
<tr>
 +
  <td align="center">FIGURE 5: sensitivity at 10s<br><br></td>
 +
  <td width="100"></td>
 +
  <td align="center">FIGURE 6: sensitivity at 100s<br><br></td>
 +
</tr>
 +
<tr>
 +
  <td align="center"><a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure7_sensitivity1000s_2.png" rel="lightbox" title="FIGURE 7: sensitivity at 1000s"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure7_sensitivity1000s_2_small.png"></a></td>
 +
  <td width="100"></td>
 +
  <td align="center"><a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure8_sensitivity10000s_2.png" rel="lightbox" title="FIGURE 8: sensitivity at 10000s"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure8_sensitivity10000s_2_small.png"></a></td>
 +
</tr>
 +
<tr>
 +
  <td align="center">FIGURE 7: sensitivity at 1000s</td>
 +
  <td width="100"></td>
 +
  <td align="center">FIGURE 8: sensitivity at 10000s</td>
 +
</tr>
 +
</table>
 +
<br><br>
-
<br><p>FIGURE 7: sensitivity at 1000s
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure9_scan_ceab_transcription.png" rel="lightbox" title="FIGURE 9: CeaB transcription parameter scan, values between 0.02 and 0.03"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure9_scan_ceab_transcription_small.png"></a><br><br>
-
<br><p>FIGURE 8: sensitivity at 10000s
+
FIGURE 9: CeaB transcription parameter scan, values between 0.02 and 0.03<br><br>
-
<br><p>FIGURE 9: CeaB transcription parameter scan, values between 0.02 and 0.03
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure10_scan_ceab_degradation.png" rel="lightbox" title="FIGURE 10: CeaB degradation parameter scan, values between 0.0009 and 0.0001"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure10_scan_ceab_degradation_small.png"></a><br><br>
-
<br><p>FIGURE 10: CeaB degradation parameter scan, values between 0.0009 and 0.0001
+
FIGURE 10: CeaB degradation parameter scan, values between 0.0009 and 0.0001
 +
 
 +
</center>
<br><br><br>
<br><br><br>

Latest revision as of 22:25, 28 October 2011

KULeuven iGEM 2011

close
overview     Freeze     Antifreeze     Cell Death


Modeling Celldeath


1. Description of the cell death system


For a full description, we refer to the extended project page. This section shows only a brief summary of the cell death description.

The cell death mechanism we use, will be induced when stimulus 1 (L-arabinose) or stimulus 2 (lactose) and at the same time a cold temperature is applied.

Procedure: We grow the bacteria at the optimal temperature of 37 degrees. Then we produce the protein we wish by applying the correct stimulus, e.g., L-arabinose to produce AFP. After synthesizing the desired amount of protein, we lower the temperature to induce the cell death mechanism.





The promoters for production of the ribolock Colicin E2 operon are two hybrid promoters: pLac-LuxR promoter and pLux-CI promoter. We describe the promoter kinetics in this subsystem with simplified mass equations. This is a simplification because hill kinetics will approach better the transcription in vivo than mass equations. In the full model, hill kinetics is applied.

FIGURE 1: pLac-luxR hybrid promotor FIGURE 2: plux-cI promotor


ODE




2. CellDeath Model



Click here to download the Celldeath model

3. Simulations


We made a simulation in such a way that the ribokey-RNA is present at a constant value (figure 3). With this assumption, the only variable in the production for CeaB would be CeaB mRNA which linearly increases. Initially the production of CeaB is increasing non-linearly, but after a certain amount of time CeaB production becomes linear (figure 4); at that moment the degradation of CeaB is becoming important as well. Production of CeaB is the rate-limiting reaction.

Here, the input of lactose or arabinose is assumed to be constant. To improve this model, it could be updated with a varying input for lactose or arabinose. Also a temperature-varying parameter will be necessary, because the promoter we use is temperature sensitive.



FIGURE 3: ribokey-RNA value hold constant, increase of CeaB



FIGURE 4: Eventually CeaB concentration increases linearly with time

4. Sensitivity analysis


In these graphs, the 'parameters'-axis shows the parameters that are varied in the sensitivity analysis, while the ones along the states axis are the ones monitored as output. The z-axis is a measure for the sensitivity of the parameter under study.

The sensitivity plots are starting from 10 seconds and ending with 10 000 seconds. The importance of sensitivity shifts from the transcription parameter to the degradation parameters.

In nature the transcription parameters will be important for a longer time, but with our simplified model the sensitivity of degradation parameters is already more important than transcription parameters after 1000s.

For optimizing the system in future, we suggest to rebuild the promoter sequence to become higher value for transcription parameters. Another possibility is to lower the degradation parameters by increasing stability of the CeaB protein. The parameter scan figures display the results of a possible variation in these parameters.

FIGURE 5: sensitivity at 10s

FIGURE 6: sensitivity at 100s

FIGURE 7: sensitivity at 1000s FIGURE 8: sensitivity at 10000s




FIGURE 9: CeaB transcription parameter scan, values between 0.02 and 0.03



FIGURE 10: CeaB degradation parameter scan, values between 0.0009 and 0.0001