Team:Wageningen UR/Project/ModelingProj2

From 2011.igem.org

(Difference between revisions)
(Modeling: Fungal Track 'n Trace)
(Modeling: Fungal Track 'n Trace)
 
(3 intermediate revisions not shown)
Line 3: Line 3:
<style type="text/css">
<style type="text/css">
-
ul li a.currentlink2m {
+
ul li a.currentlinkfungus2m {
color: black !important;
color: black !important;
}
}
Line 9: Line 9:
ul li a.currentlinktop3 {
ul li a.currentlinktop3 {
color: #63a015 !important;
color: #63a015 !important;
-
}
 
-
 
-
ul li a.currentlinktop4 {
 
-
color: black !important;
 
-
display: block;
 
}
}
Line 28: Line 23:
{{:Team:Wageningen_UR/Templates/Style | text= __NOTOC__
{{:Team:Wageningen_UR/Templates/Style | text= __NOTOC__
-
[[File:Spee_FTnT_Model-1_WUR.jpg|300px|center]]
+
[[File:Spee_FTnT_Model-1_WUR.jpg|600px|center]]
-
The Leu3p (x(2)) dimer blocks transcription from the alpha-IPM synthase (alpha IPMS) promoter. Alpha-IPM (x(1)) binding to this dimer releases it from the promoter and enhances the transcription rate. p(5) and p(6) model both constitutive expression and the transcription rate increase upon alpha-IPM binding. From alpha-IPMS mRNA (x(3)) the protein is formed, modelled by p(9). Alpha-IPMS (x(4)) enzymatically produces alpha-IPM, which is then incorporated in the beginning of this loop again. Intercellular transport of alpha-IPM creates a signal transduction through a hyphe.
+
The Leu3p (x(2)) dimer blocks transcription from the alpha-IPM synthase (alpha IPMS) promoter. Alpha-IPM (x(1)) binding to this dimer releases it from the promoter and enhances the transcription rate. p(5) and p(6) model both constitutive expression and the transcription rate increase upon alpha-IPM binding. From alpha-IPMS mRNA (x(3)) the protein is formed, modelled by p(9). Alpha-IPMS (x(4)) enzymatically produces alpha-IPM, which is then incorporated in the beginning of this loop again. Intercellular transport of alpha-IPM creates a signal transduction through a hypha.
Additionally, x(5) is required for modelling the enzymatic reaction. Its formation is described by p(11). Each type of molecule has also been assigned a degradation constant, such as p(8) for x(3).  
Additionally, x(5) is required for modelling the enzymatic reaction. Its formation is described by p(11). Each type of molecule has also been assigned a degradation constant, such as p(8) for x(3).  
  }}
  }}

Latest revision as of 20:20, 21 September 2011

Building a Synchronized Oscillatory System

Modeling: Fungal Track 'n Trace

Spee FTnT Model-1 WUR.jpg

The Leu3p (x(2)) dimer blocks transcription from the alpha-IPM synthase (alpha IPMS) promoter. Alpha-IPM (x(1)) binding to this dimer releases it from the promoter and enhances the transcription rate. p(5) and p(6) model both constitutive expression and the transcription rate increase upon alpha-IPM binding. From alpha-IPMS mRNA (x(3)) the protein is formed, modelled by p(9). Alpha-IPMS (x(4)) enzymatically produces alpha-IPM, which is then incorporated in the beginning of this loop again. Intercellular transport of alpha-IPM creates a signal transduction through a hypha.

Additionally, x(5) is required for modelling the enzymatic reaction. Its formation is described by p(11). Each type of molecule has also been assigned a degradation constant, such as p(8) for x(3).