Team:KULeuven/Modeling
From 2011.igem.org
(Difference between revisions)
(95 intermediate revisions not shown) | |||
Line 4: | Line 4: | ||
<title>KULeuven iGEM 2011</title> | <title>KULeuven iGEM 2011</title> | ||
- | <link rel="stylesheet" type="text/css" href="http:// | + | <link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/main02.css" media="screen" /> |
- | <link rel="stylesheet" type="text/css" href="http:// | + | <link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/lightbox.css" media="screen" /> |
<link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'> | <link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'> | ||
- | <script type="text/javascript" src="http:// | + | <script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/prototype.js"></script> |
- | <script type="text/javascript" src="http:// | + | <script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/scriptaculous.js?load=effects,builder"></script> |
- | <script type="text/javascript" src="http:// | + | <script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/lightbox.js"></script> |
<script src="http://widgets.twimg.com/j/2/widget.js"></script> | <script src="http://widgets.twimg.com/j/2/widget.js"></script> | ||
+ | |||
+ | <style type="text/css"> | ||
+ | |||
+ | #modeling_submenu{ | ||
+ | position:relative; | ||
+ | top:0px; | ||
+ | left:-50px; | ||
+ | margin:0 auto; | ||
+ | width:680px; | ||
+ | height:35px; | ||
+ | text-align:center; | ||
+ | background:#fff; | ||
+ | padding:0; | ||
+ | } | ||
+ | #modeling_submenu a{ | ||
+ | font-family: 'Francois One', sans-serif, verdana, geneva; | ||
+ | color:#666; | ||
+ | font-size:12px; | ||
+ | text-transform:uppercase; | ||
+ | letter-spacing:1px; | ||
+ | margin:5px 0 0 0; | ||
+ | } | ||
+ | #modeling_submenu a:hover{ | ||
+ | color:#000; | ||
+ | } | ||
+ | </style> | ||
</head> | </head> | ||
Line 18: | Line 44: | ||
<body> | <body> | ||
- | <img src="http:// | + | <img src="http://homes.esat.kuleuven.be/~igemwiki/images/bg_team02.jpg" class="bg_team"> |
- | <div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http:// | + | <div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/logo.png" border="0" width="100" height="100"></a></div> |
- | <div id="logo_igem"><object data="http:// | + | <div id="logo_igem"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/igemlogo.html" style="overflow:hidden;" type="text/html" width="99" height="80"></object></div> |
<div id="twitter_widget"> | <div id="twitter_widget"> | ||
- | <a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http:// | + | <a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/close_button.png" width="10" height="10" style="margin: 0 0 0 140px;" alt="close"></a> |
<script> | <script> | ||
new TWTR.Widget({ | new TWTR.Widget({ | ||
Line 58: | Line 84: | ||
</div> | </div> | ||
- | <div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http:// | + | <div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/twitter_allmedia.png" width="120" height="35" border="0" /></a></div> |
- | <div id="social_icons"><object data="http:// | + | <div id="social_icons"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/social_icons.html" style="overflow:hidden;" type="text/html" width="110" height="24"></object></div> |
<div id="centeredmenu_bg"></div> | <div id="centeredmenu_bg"></div> | ||
<ul id="nav"> | <ul id="nav"> | ||
- | + | ||
<li class="off"><a href="https://2011.igem.org/Team:KULeuven">Home</a> | <li class="off"><a href="https://2011.igem.org/Team:KULeuven">Home</a> | ||
<ul> | <ul> | ||
Line 70: | Line 96: | ||
</ul></li> | </ul></li> | ||
- | <li class=" | + | <li class="off"><a href="https://2011.igem.org/Team:KULeuven/Description">Project</a> |
<ul> | <ul> | ||
<li><a href="#"></a></li> | <li><a href="#"></a></li> | ||
- | <li><a href="https://2011.igem.org/Team:KULeuven/ | + | <li><a href="https://2011.igem.org/Team:KULeuven/Description">Description</a></li> |
- | + | ||
<li><a href="https://2011.igem.org/Team:KULeuven/Modeling" style="border-bottom:2px solid #000; color:#000;">Modeling</a></li> | <li><a href="https://2011.igem.org/Team:KULeuven/Modeling" style="border-bottom:2px solid #000; color:#000;">Modeling</a></li> | ||
+ | <li><a href="https://2011.igem.org/Team:KULeuven/Thermodynamics">Thermodynamics</a></li> | ||
+ | <li><a href="https://2011.igem.org/Team:KULeuven/Applications">Applications</a></li> | ||
<li><a href="https://2011.igem.org/Team:KULeuven/Biobricks">Biobricks</a></li> | <li><a href="https://2011.igem.org/Team:KULeuven/Biobricks">Biobricks</a></li> | ||
- | |||
<li><a href="https://2011.igem.org/Team:KULeuven/Notebook">Notebook</a></li> | <li><a href="https://2011.igem.org/Team:KULeuven/Notebook">Notebook</a></li> | ||
+ | <li><a href="https://2011.igem.org/Team:KULeuven/Results">Results</a></li> | ||
</ul></li> | </ul></li> | ||
Line 99: | Line 126: | ||
<li><a href="https://2011.igem.org/Team:KULeuven/Ethics">Ethics</a></li> | <li><a href="https://2011.igem.org/Team:KULeuven/Ethics">Ethics</a></li> | ||
<li><a href="https://2011.igem.org/Team:KULeuven/Safety">Safety</a></li> | <li><a href="https://2011.igem.org/Team:KULeuven/Safety">Safety</a></li> | ||
+ | <li><a href="https://2011.igem.org/Team:KULeuven/Law&Patents">Law&Patents</a></li> | ||
</ul></li> | </ul></li> | ||
Line 107: | Line 135: | ||
<li class="off"><a href="https://2011.igem.org/Team:KULeuven/Acknowledgments">Acknowledgments</a> | <li class="off"><a href="https://2011.igem.org/Team:KULeuven/Acknowledgments">Acknowledgments</a> | ||
+ | <ul> | ||
+ | <li><a href="#"></a></li> | ||
+ | </ul></li> | ||
+ | |||
+ | <li class="off"><a href="https://2011.igem.org/Team:KULeuven/Data">Data</a> | ||
<ul> | <ul> | ||
<li><a href="#"></a></li> | <li><a href="#"></a></li> | ||
Line 114: | Line 147: | ||
<div id="contentbox" style="text-align:justify;"> | <div id="contentbox" style="text-align:justify;"> | ||
- | < | + | <div id="modeling_submenu"><a href="https://2011.igem.org/Team:KULeuven/Modeling" style="color:#000; border-bottom:2px solid #000;">overview</a> <a href="https://2011.igem.org/Team:KULeuven/Freeze">Freeze</a> <a href="https://2011.igem.org/Team:KULeuven/Antifreeze">Antifreeze</a> <a href="https://2011.igem.org/Team:KULeuven/Death">Cell Death</a></div> |
+ | <br><br> | ||
- | < | + | <h3>Modeling Overview</h3> |
- | + | ||
- | <br>< | + | <br><h2>1. Description of the whole system</h2> |
+ | To predict and optimize the behaviour of E.D. Frosti, we constructed a model to mathematical describe the biological system. The system can be divided into three subsystems, representing the freeze, antifreeze and cell death mechanism of the bacterial cell. Lactose will induce the freeze system, resulting in the production of the ice nucleating protein (INP). In addition, lactose will repress the antifreeze system, preventing the formation of the antifreeze protein (AFP). On the other hand, L-arabinose is the inducing compound of the antifreeze system and the repressing compound of the freeze system. Upon application in the environment, a cell death mechanism will kill the cells when low temperatures are applied. We designed one model for the whole system and 3 models for 3 subsystems. The 3 subsystems are antifreeze, freeze and cell death. For more information about these 3 subsystems, we refer to the extended <a href="https://2011.igem.org/Team:KULeuven/Details"> project description</a> and the 3 modelling pages: <a href="https://2011.igem.org/Team:KULeuven/Freeze"> freeze</a>, <a href="https://2011.igem.org/Team:KULeuven/Antifreeze"> antifreeze</a> and <a href="https://2011.igem.org/Team:KULeuven/Death">cell death</a>. <br><br> | ||
- | <br>< | + | To make predictions for the E.D. Frosti system, a structured segregated model is designed in the MATLAB <a href="http://www.mathworks.nl/products/simbiology/index.html"> Simbiology Toolbox</a> . The kinetic actions (transcription, translation, complexation, ...) that take place in the subsystems can be described by Ordinary Differential Equations (ODEs) like Mass-Action laws, Hill Kinetic laws,<a href="http://www.inrets.fr/ur/lte/publications/publications-pdf/Maurin-publi/Hill-Goutelle,MMet%20+.pdf "> [1]</a> and so on. An extensive search for parameters involved in these ODEs has resulted in the discovery of almost all necessary quantities for the simulations. To summarize the model, we made a PDF-file containing all the ODEs involved in modeling the subsystem, and a file with a clear overview of the used parameters <a href="https://2008.igem.org/Team:KULeuven/Software/Simbiology2LaTeX">[2]</a>. <br><br> |
- | < | + | <center> |
- | <br>< | + | <img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/celldeath_scheme.jpg"><br><br> |
- | + | </center> | |
- | + | <br><h2>2. Full Model </h2> | |
- | |||
- | + | <center> | |
- | <br>< | + | <img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/full_model.jpg" border="0"><br><br> |
- | + | </center> | |
- | + | <a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/full_model.zip">Click here to download the full model</a><br><br> | |
- | < | + | <a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/kinetic_parameters.pdf"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/pdf_icon.jpg"> Kinetic parameters</a><br><br> |
- | < | + | <a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/reference.pdf"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/pdf_icon.jpg"> Reference</a> |
- | <br>< | + | <br><h2>3. Simulation tests</h2> |
- | + | Simulations with different initial amounts of lactose and arabinose were done to check the efficiency of the dual inhibition system. When both arabinose and lactose are present, AFP production as well as INP production should be inhibited. However, the results reveal that there is no inhibition of AFP when the concentration of lactose and arabinose are both set to 1. The production rates of AFP and CeaB are much higher than that of INP formation (Figure 1). The main reason for the difference in protein production is the formation of LuxR-AHL complex, which is a fast reaction compared to other reactions in the system. The LuxR-AHL complex stimulates AFP production and inhibits INP production. Therefore, the rate of AFP production is much higher than the rate of INP production. In addition, the inhibition of AFP production is much lower than the inhibition of INP production.<br><br> | |
- | <br>< | + | |
+ | The dual inhibition system can be improved by further parameter optimization or structural system changes based on simulations by the model. At the moment, this problem has no effect on the proper working of the E.D. Frosti system, which is the production of AFP or INP when one stimulus is present. We never want to create AFP and INP at the same time.<br><br> | ||
+ | |||
+ | <center> | ||
+ | |||
+ | <img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure01_overview.jpg"><br><br> | ||
+ | Figure 1: amount of lactose-arabinose 1-1, huge difference between production of AFP and INP<br><br> | ||
+ | |||
+ | <img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure02_overview.jpg"><br><br> | ||
+ | Figure 2: amount of lactose-arabinose 100-1 after 100 seconds <br><br> | ||
+ | |||
+ | </center> | ||
+ | |||
+ | <h2>4. Sensitivity Analysis and parameter scan</h2> | ||
+ | |||
+ | Sensitivity analysis (SA) is used to examine how the activity of the gene expression in the output of each model can be attributed to different kinetic parameters in the inputs of the model. We can also use this technique to determine the effects of changing variable in the model. The results of sensitivity analysis for each submodel are shown in the subsystem pages. | ||
+ | <br><br><br><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | </div> | ||
+ | <br><br> | ||
</div> | </div> |
Latest revision as of 12:45, 27 October 2011
Modeling Overview
1. Description of the whole system
To predict and optimize the behaviour of E.D. Frosti, we constructed a model to mathematical describe the biological system. The system can be divided into three subsystems, representing the freeze, antifreeze and cell death mechanism of the bacterial cell. Lactose will induce the freeze system, resulting in the production of the ice nucleating protein (INP). In addition, lactose will repress the antifreeze system, preventing the formation of the antifreeze protein (AFP). On the other hand, L-arabinose is the inducing compound of the antifreeze system and the repressing compound of the freeze system. Upon application in the environment, a cell death mechanism will kill the cells when low temperatures are applied. We designed one model for the whole system and 3 models for 3 subsystems. The 3 subsystems are antifreeze, freeze and cell death. For more information about these 3 subsystems, we refer to the extended project description and the 3 modelling pages: freeze, antifreeze and cell death.To make predictions for the E.D. Frosti system, a structured segregated model is designed in the MATLAB Simbiology Toolbox . The kinetic actions (transcription, translation, complexation, ...) that take place in the subsystems can be described by Ordinary Differential Equations (ODEs) like Mass-Action laws, Hill Kinetic laws, [1] and so on. An extensive search for parameters involved in these ODEs has resulted in the discovery of almost all necessary quantities for the simulations. To summarize the model, we made a PDF-file containing all the ODEs involved in modeling the subsystem, and a file with a clear overview of the used parameters [2].
2. Full Model
Kinetic parameters
Reference
3. Simulation tests
Simulations with different initial amounts of lactose and arabinose were done to check the efficiency of the dual inhibition system. When both arabinose and lactose are present, AFP production as well as INP production should be inhibited. However, the results reveal that there is no inhibition of AFP when the concentration of lactose and arabinose are both set to 1. The production rates of AFP and CeaB are much higher than that of INP formation (Figure 1). The main reason for the difference in protein production is the formation of LuxR-AHL complex, which is a fast reaction compared to other reactions in the system. The LuxR-AHL complex stimulates AFP production and inhibits INP production. Therefore, the rate of AFP production is much higher than the rate of INP production. In addition, the inhibition of AFP production is much lower than the inhibition of INP production.The dual inhibition system can be improved by further parameter optimization or structural system changes based on simulations by the model. At the moment, this problem has no effect on the proper working of the E.D. Frosti system, which is the production of AFP or INP when one stimulus is present. We never want to create AFP and INP at the same time.
Figure 1: amount of lactose-arabinose 1-1, huge difference between production of AFP and INP
Figure 2: amount of lactose-arabinose 100-1 after 100 seconds