Team:Washington/Alkanes/Background
From 2011.igem.org
(Difference between revisions)
Line 1: | Line 1: | ||
{{Template:Team:Washington/Templates/Header}} | {{Template:Team:Washington/Templates/Header}} | ||
The world is based upon petroleum based fuels. However, these fuels are non-renewable, and emit carbon dioxide into the atmosphere. Several attempts have been made to replace petroleum with biologically derived fuels that can be made in a renewable manner, with emitted carbon dioxide being reused to make more fuel (ethanol and other alcohols, and biodiesel). However, our current infrastructure and engines are designed to run on alkane based fuels. These "alternative" fuels are characterized by increased corrosivity, and often have lower energy densities, leading to lower fuel efficiency. The optimal fuel would be one that has the compatibility of petroleum based fuels, but be made in a renewable manner. Since no true replacement for petroleum based fuel has been discovered, the solution to this problem would be to make fuel identical to petroleum based fuels in a renewable manner. | The world is based upon petroleum based fuels. However, these fuels are non-renewable, and emit carbon dioxide into the atmosphere. Several attempts have been made to replace petroleum with biologically derived fuels that can be made in a renewable manner, with emitted carbon dioxide being reused to make more fuel (ethanol and other alcohols, and biodiesel). However, our current infrastructure and engines are designed to run on alkane based fuels. These "alternative" fuels are characterized by increased corrosivity, and often have lower energy densities, leading to lower fuel efficiency. The optimal fuel would be one that has the compatibility of petroleum based fuels, but be made in a renewable manner. Since no true replacement for petroleum based fuel has been discovered, the solution to this problem would be to make fuel identical to petroleum based fuels in a renewable manner. | ||
+ | |||
+ | A recent study(cite) has shown production of alkanes(the main component of gasoline) in "E. coli" by introducing two genes native to cyanobacteria, Acyl-ACP Reductase(AAR), and Aldehyde Decarbonylase(ADC). AAR reduces Acyl-ACPs( intermediates in fatty acid biosynthesis) into the corresponding long-chain fatty aldehyde. This aldehyde acts as a substrate for ADC, which removes the aldehyde's carbonyl group, yielding Formate and an alkane one carbon shorter than the original Acyl-ACP. |
Revision as of 03:17, 3 September 2011
A recent study(cite) has shown production of alkanes(the main component of gasoline) in "E. coli" by introducing two genes native to cyanobacteria, Acyl-ACP Reductase(AAR), and Aldehyde Decarbonylase(ADC). AAR reduces Acyl-ACPs( intermediates in fatty acid biosynthesis) into the corresponding long-chain fatty aldehyde. This aldehyde acts as a substrate for ADC, which removes the aldehyde's carbonyl group, yielding Formate and an alkane one carbon shorter than the original Acyl-ACP.