Team:Cornell
From 2011.igem.org
(Difference between revisions)
Line 2: | Line 2: | ||
{{:Team:Cornell/Templates/hideHeader}} | {{:Team:Cornell/Templates/hideHeader}} | ||
<br><br> | <br><br> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
=='''Project description'''== | =='''Project description'''== | ||
Our current proposed project for the summer is the fabrication of a microfluidic device for the cell-free production of bio-pharmaceuticals by binding the necessary enzymes of the pathway to the surface of the channel. The enzymes would be harvested from cellular lysate created by engineering light-induced cell death in bacterial populations which produce the needed enzymes. Our goal is to automate and simplify the device construction to allow for a scalable mircofluidic factory. | Our current proposed project for the summer is the fabrication of a microfluidic device for the cell-free production of bio-pharmaceuticals by binding the necessary enzymes of the pathway to the surface of the channel. The enzymes would be harvested from cellular lysate created by engineering light-induced cell death in bacterial populations which produce the needed enzymes. Our goal is to automate and simplify the device construction to allow for a scalable mircofluidic factory. |
Revision as of 03:12, 4 August 2011
Project description
Our current proposed project for the summer is the fabrication of a microfluidic device for the cell-free production of bio-pharmaceuticals by binding the necessary enzymes of the pathway to the surface of the channel. The enzymes would be harvested from cellular lysate created by engineering light-induced cell death in bacterial populations which produce the needed enzymes. Our goal is to automate and simplify the device construction to allow for a scalable mircofluidic factory.