NASA
From 2011.igem.org
Line 32: | Line 32: | ||
''' | ''' | ||
<li>1) Cumbers J, Rothschild, L.J. 2010. BISRU: Biological In Situ Resource Utilization. Astrobiology Science Conference 2010: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, held April 26-20, 2010 in League City, Texas. LPI Contribution No. 5672.<li> | <li>1) Cumbers J, Rothschild, L.J. 2010. BISRU: Biological In Situ Resource Utilization. Astrobiology Science Conference 2010: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, held April 26-20, 2010 in League City, Texas. LPI Contribution No. 5672.<li> | ||
- | 2) Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, de Mora K, Glieberman AL, Monie DD, Endy D. 2009. Measuring the Activity of BioBrick Promoters Using an In Vivo Reference Standard. J Biol Eng. Mar 20;3(1):4. | + | <li>2) Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, de Mora K, Glieberman AL, Monie DD, Endy D. 2009. Measuring the Activity of BioBrick Promoters Using an In Vivo Reference Standard. J Biol Eng. Mar 20;3(1):4.<li> |
- | 3) Mitsuzawa S, Kagawa H, Li Y, Chan SL, Paavola CD, Trent JD. 2009. The rosettazyme: a synthetic cellulosome. J Biotechnol. 20;143(2):139-44. | + | <li>3) Mitsuzawa S, Kagawa H, Li Y, Chan SL, Paavola CD, Trent JD. 2009. The rosettazyme: a synthetic cellulosome. J Biotechnol. 20;143(2):139-44.<li> |
- | 4) Rothschild, L.J. 2010. A powerful toolkit for synthetic biology: over 3.8 billion years of evolution. BioEssays 32:304–313. | + | <li>4) Rothschild, L.J. 2010. A powerful toolkit for synthetic biology: over 3.8 billion years of evolution. BioEssays 32:304–313.<li> |
- | 5) Rothschild, L.J. 2010. Evolution, Synthetic Life, and The Tin Woodman Dilemma J. Cosmology 8. | + | <li>5) Rothschild, L.J. 2010. Evolution, Synthetic Life, and The Tin Woodman Dilemma J. Cosmology 8.<li> |
- | 6) Rothschild, L.J. 2010. What Synthetic Biology Can Do For Astrobiology. Astrobiology Science Conference 2010: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, held April 26-20, 2010 in League City, Texas. LPI Contribution No. 5565. | + | <li>6) Rothschild, L.J. 2010. What Synthetic Biology Can Do For Astrobiology. Astrobiology Science Conference 2010: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, held April 26-20, 2010 in League City, Texas. LPI Contribution No. 5565.<li> |
- | 7) Gerda Horneck, David M. Klaus and Rocco L. Mancinelli. 2010. Space Microbiology. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar. 2010, p. 121–156. | + | <li>7) Gerda Horneck, David M. Klaus and Rocco L. Mancinelli. 2010. Space Microbiology. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar. 2010, p. 121–156.<li> |
Revision as of 18:50, 16 March 2011
Space Synthetic Biology – a Tool for Space Science and Exploration
NASA's mission is broadly defined: "to pioneer the future in space exploration, scientific discovery and aeronautics research". Synthetic Biology will one day provide more efficient, lower cost, practical approaches to specific challenges in space. NASA programs can derive significant benefits by utilizing this emerging field to create advances for biological life support and in-situ resource utilization, for radiation and gravitational biology countermeasures, for advanced sensing, advanced materials, and for research in the origins and evolution of life.
The NASA Space Synthetic Biology Project is designed to harness biology in reliable, robust, engineered systems to support NASA’s exploration and science missions, to improve life on Earth, and to help shape NASA’s future. The project is also intended to contribute foundational tools to the synthetic biology community. It is led by the NASA Ames Research Center. See our website at http://syntheticbiology.arc.nasa.gov/.
While advances in biosciences and biotechnology will no doubt transform the world in this “century of biology,” Synthetic Biology in particular holds the potential for rapid, game-changing advances, since it liberates humanity from the slow creep of natural evolution. This is particularly relevant to NASA’s long-term exploration missions, which will require biological systems and ecosystems to be sustained in extraterrestrial environments. Biological systems that have evolved in terrestrial environments are generally not well suited to extraterrestrial environments, and the time required for evolutionary adaptation is far too great. NASA’s solution has been to sustain life in space by engineering suitable environments. Advances in Synthetic Biology will provide complementary capability to engineer biological systems better suited to extraterrestrial environments.
As a participant in iGEM, we hope you will consider exploring projects related to space technology needs, including: