Team:MIT

From 2011.igem.org

(Difference between revisions)
 
(64 intermediate revisions not shown)
Line 6: Line 6:
<body>
<body>
-
<div id="col_left">
+
<div id="col_center">
     <div id="block-content">
     <div id="block-content">
     </div><!--end block-content-->
     </div><!--end block-content-->
-
TALK ABOUT PROJECT HERE <p>
+
<h3>Tissues by Design</h3>
 +
<p>Our project focuses on tissue self-construction to achieve specific patterns of cell differentiation (initially with fluorescence, ultimately with cell fate regulators) with genetic circuits. To accomplish this, we focused on three components: cell-cell communication pathways, intracellular information processing circuits, and cell-cell adhesion. Through engineered control of these mechanisms, we are investigating how programmed local rules of interactions between cells can lead to the emergence of desired global patternings.</p>
 +
 
 +
<br>
 +
<p><img src="https://static.igem.org/mediawiki/2011/5/51/Simulation.jpg" style="max-width:800px; margin-right:10px;"/></p></br>
 +
<p>Above is the result of a simulation run, starting with undifferentiated cells and ending with a pattern.</p>
 +
 
 +
<p>Specifically, for cell-cell signaling, we developed a modular juxtacrine platform, using Notch and Delta proteins. For intracellular information processing circuits, as a proof of concept, we build a 2-input AND gate. For cell-cell adhesion, the final output of our system, we used cadherin.
 +
Below is an animation depicting our project components. The cell-cell signaling of Notch-Delta interaction leads to the cleavage of the Notch intracellular domain, which enters the nucleus and after logic processing, expresses cadherins, which cause cells to adhere to similarly expressing cells.
 +
</p></br>
 +
<div align="center"><iframe width="400" height="300" src="http://www.youtube.com/embed/rGOB0gMxf_8" frameborder="0" allowfullscreen></iframe></div>
 +
<br>
 +
 
 +
We developed software tools to model the behavior of our system. Below is a sample of a simulation of cells with genetic circuits and how they differentiate.
 +
<div align="center"><iframe width="400" height="300" src="http://www.youtube.com/embed/dbz4VegsJOw?rel=0&amp;hd=1" frameborder="0" allowfullscreen></iframe>
 +
</div><br>
     <div id="center">
     <div id="center">
Line 22: Line 37:
        <li><a href="http://www.embitec.com"><img src='https://static.igem.org/mediawiki/2011/7/75/Mit-embitec.jpg' style="width:175px" /></a></li>
        <li><a href="http://www.embitec.com"><img src='https://static.igem.org/mediawiki/2011/7/75/Mit-embitec.jpg' style="width:175px" /></a></li>
                 <li><a href="http://ebics.net"><img src='https://static.igem.org/mediawiki/igem.org/0/0d/EBICS_logo.JPG' style="width:175px"></a></li>
                 <li><a href="http://ebics.net"><img src='https://static.igem.org/mediawiki/igem.org/0/0d/EBICS_logo.JPG' style="width:175px"></a></li>
-
<li><a href="https://2011.igem.org/Main_Page"><img src='https://static.igem.org/mediawiki/igem.org/d/de/IGEM_basic_Logo_stylized.png' style="width:175px"></li>
+
                <li><a href="http://ginkgobioworks.com/"><img src='http://ginkgobioworks.com/images/ginkgobioworks_logo.png' style="width:175px; "></a></li>
 +
                <li><a href="https://2011.igem.org/Main_Page"><img src='https://static.igem.org/mediawiki/igem.org/d/de/IGEM_basic_Logo_stylized.png' style="width:175px;"></li>
    </ul>
    </ul>
</div>
</div>
Line 43: Line 59:
     </div><!-- end 'center' -->
     </div><!-- end 'center' -->
-
 
-
For more information about iGEM, please refer to: https://2011.igem.org/Main_Page </p>
 
     </div><!--end block-content-->
     </div><!--end block-content-->
</div><!--end col_left-->
</div><!--end col_left-->
-
<div id="col_right">
+
      
-
     <div id="twitter">
+
-
        <h2>Latest Tweets</h2>
+
-
<ul id="twitter_update_list">
+
-
    <li>Loading Tweets..</li>
+
-
</ul>
+
-
<img src='https://static.igem.org/mediawiki/2011/d/da/MIT-twitter.jpg' style="width:100px; float:right"><br /><br />
+
-
<a href="http://twitter.com/share" class="twitter-share-button" data-count="none" >Tweet</a><script type="text/javascript" src="http://platform.twitter.com/widgets.js"></script> <br />
+
-
<a href="http://twitter.com/MIT_iGEM" class="twitter-follow-button">Follow @MIT_iGEM</a>
+
-
<script src="http://platform.twitter.com/widgets.js" type="text/javascript"></script>
+
-
    </div><!-- end Twitter -->
+
-
 
+
-
    <div id="facebook" style="clear:both;">
+
-
        <h2>Facebook</h2>
+
-
        <div id="fb-root" style="margin-bottom: 10px;"></div><fb:like-box href="https://www.facebook.com/pages/MIT-iGEM-2011/120181284734145" width="230" show_faces="false" border_color="" stream="false" header="true"></fb:like-box>
+
-
 
+
-
    </div><!-- end Facebook -->
+
-
+
-
    <div id="contacts">
+
-
<h2>Contact Us</h2>
+
-
<p><span class="green">Email:</span><a href="index.html"> igem2011@mit.edu</a></p>
+
-
    </div>
+
-
</div><!--end col_right-->
+
-
<script type="text/javascript" src="http://twitter.com/javascripts/blogger.js"></script>
 
-
<script type="text/javascript" src="http://twitter.com/statuses/user_timeline/MIT_iGEM.json?callback=twitterCallback2&count=4"></script>
 
-
<script src="http://connect.facebook.net/en_US/all.js#xfbml=1"></script>
 
-
 
</body>
</body>
</html>
</html>

Latest revision as of 04:03, 29 October 2011

Tissues by Design

Our project focuses on tissue self-construction to achieve specific patterns of cell differentiation (initially with fluorescence, ultimately with cell fate regulators) with genetic circuits. To accomplish this, we focused on three components: cell-cell communication pathways, intracellular information processing circuits, and cell-cell adhesion. Through engineered control of these mechanisms, we are investigating how programmed local rules of interactions between cells can lead to the emergence of desired global patternings.



Above is the result of a simulation run, starting with undifferentiated cells and ending with a pattern.

Specifically, for cell-cell signaling, we developed a modular juxtacrine platform, using Notch and Delta proteins. For intracellular information processing circuits, as a proof of concept, we build a 2-input AND gate. For cell-cell adhesion, the final output of our system, we used cadherin. Below is an animation depicting our project components. The cell-cell signaling of Notch-Delta interaction leads to the cleavage of the Notch intracellular domain, which enters the nucleus and after logic processing, expresses cadherins, which cause cells to adhere to similarly expressing cells.



We developed software tools to model the behavior of our system. Below is a sample of a simulation of cells with genetic circuits and how they differentiate.

Sponsors

MIT Departments