Team:KULeuven/Freeze

From 2011.igem.org

(Difference between revisions)
 
(22 intermediate revisions not shown)
Line 4: Line 4:
<title>KULeuven iGEM 2011</title>
<title>KULeuven iGEM 2011</title>
-
<link rel="stylesheet" type="text/css" href="http://www.shbts.nl/igem/style/main02.css" media="screen" />
+
<link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/main02.css" media="screen" />
-
<link rel="stylesheet" type="text/css" href="http://www.shbts.nl/igem/style/lightbox.css" media="screen" />
+
<link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/lightbox.css" media="screen" />
<link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'>
<link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/prototype.js"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/prototype.js"></script>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/scriptaculous.js?load=effects,builder"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/scriptaculous.js?load=effects,builder"></script>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/lightbox.js"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/lightbox.js"></script>
<script src="http://widgets.twimg.com/j/2/widget.js"></script>
<script src="http://widgets.twimg.com/j/2/widget.js"></script>
Line 44: Line 44:
<body>
<body>
-
<img src="http://www.shbts.nl/igem/images/bg_team02.jpg" class="bg_team">
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/bg_team02.jpg" class="bg_team">
-
<div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http://www.shbts.nl/igem/images/logo.png" border="0" width="100" height="100"></a></div>
+
<div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/logo.png" border="0" width="100" height="100"></a></div>
-
<div id="logo_igem"><object data="http://www.shbts.nl/igem/html/igemlogo.html" style="overflow:hidden;" type="text/html" width="99" height="80"></object></div>
+
<div id="logo_igem"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/igemlogo.html" style="overflow:hidden;" type="text/html" width="99" height="80"></object></div>
<div id="twitter_widget">
<div id="twitter_widget">
-
<a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http://www.shbts.nl/igem/images/close_button.png" width="10" height="10" style="margin: 0 0 0 140px;" alt="close"></a>
+
<a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/close_button.png" width="10" height="10" style="margin: 0 0 0 140px;" alt="close"></a>
<script>
<script>
new TWTR.Widget({
new TWTR.Widget({
Line 84: Line 84:
</div>
</div>
-
<div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http://www.shbts.nl/igem/images/twitter_allmedia.png" width="120" height="35" border="0" /></a></div>
+
<div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/twitter_allmedia.png" width="120" height="35" border="0" /></a></div>
-
<div id="social_icons"><object data="http://www.shbts.nl/igem/html/social_icons.html" style="overflow:hidden;" type="text/html" width="110" height="24"></object></div>
+
<div id="social_icons"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/social_icons.html" style="overflow:hidden;" type="text/html" width="110" height="24"></object></div>
<div id="centeredmenu_bg"></div>
<div id="centeredmenu_bg"></div>
Line 145: Line 145:
<div id="modeling_submenu"><a href="https://2011.igem.org/Team:KULeuven/Modeling">overview</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Freeze" style="color:#000; border-bottom:2px solid #000;">Freeze</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Antifreeze">Antifreeze</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Death">Cell Death</a></div>
<div id="modeling_submenu"><a href="https://2011.igem.org/Team:KULeuven/Modeling">overview</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Freeze" style="color:#000; border-bottom:2px solid #000;">Freeze</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Antifreeze">Antifreeze</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Death">Cell Death</a></div>
 +
<br><br>
<h3>Modeling Freeze</h3>
<h3>Modeling Freeze</h3>
Line 150: Line 151:
<br><h2>1. Description of the freeze system</h2>
<br><h2>1. Description of the freeze system</h2>
-
<br><p>The composite biobrick (BBa_K584011) encodes our freeze system. The promoter, pLac_lux hybrid promoter (BBa_K091100), of the freeze system is negatively regulated through LuxR-AHL complex and positively regulated through lactose. LuxR-AHL production is induced by L-arabinose. When the promoter is positively regulated, 4 four proteins will be transcribed. The first three proteins are responsible for the production ofing a red lycopene color, while the fourth protein is the ice nucleating protein (INP).
+
Here we will describe the freeze system briefly. The <i>pLac-Lux</i> promoter (<a href="http://partsregistry.org/Part:BBa_K091100" target=”blank”>BBa_K091100</a>), of the freeze system is negatively regulated through LuxR-AHL complex and positively regulated through lactose. LuxR-AHL production is induced by L-arabinose. When the promoter is positively regulated, four proteins will be transcribed. The first three proteins are responsible for the production of a red lycopene color, while the fourth protein is the ice nucleating protein (INP).
-
<br><p>The composite biobrick (BBa_K584006) encodes for the production of the regulation complex LuxR-AHL.
+
<center>
-
 
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/freeze_scheme_complete.jpg" border="0"><br><br>
-
<br><p>FREEZE SCHEME COMPLETE
+
</center>
<br><p>In the freeze model, the following simplification is made: The association of LuxR and HSL is not included.
<br><p>In the freeze model, the following simplification is made: The association of LuxR and HSL is not included.
-
The promoter, pLac_lux hybrid promoter (BBa_K091100), of the freeze subsystem is negatively regulated through LuxI and positively regulated through lactose. LuxI production is induced by L-arabinose.  
+
The <i>pLac_lux hybrid</i> promoter (<a href="http://partsregistry.org/Part:BBa_K091100" target=”blank”>BBa_K091100</a>), of the freeze subsystem is negatively regulated through LuxI and positively regulated through lactose. LuxI production is induced by L-arabinose.  
<br><p>However in the full model the LuxR-HSL association is included.<br><br>
<br><p>However in the full model the LuxR-HSL association is included.<br><br>
 +
<center>
<center>
-
<img src="http://www.shbts.nl/igem/images/modeling/pijltjesschema.jpg" border="0"><br><br>
 
-
BIOBRICK SCHEME 1
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/pijltjesschema.jpg" border="0"><br><br>
-
BIOBRICK SCHEME 2
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/biobrickschema1.jpg" border="0"><br><br>
 +
 
 +
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/biobrickschema2.jpg" border="0"><br><br>
 +
 
 +
</center>
 +
 
 +
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/ODEfreeze.pdf"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/pdf_icon.jpg"> ODE</a><br><br>
-
<br><p><a href="http://www.shbts.nl/igem/images/modeling/ODEfreeze.pdf">ODE</a>
 
-
<br><p>PARAMETER TABLE
 
<br><h2>2. Freeze Model </h2>
<br><h2>2. Freeze Model </h2>
<center>
<center>
-
<a href="http://www.shbts.nl/igem/images/modeling/model_freeze.jpg" rel="lightbox" title=""><img src="http://www.shbts.nl/igem/images/modeling/model_freeze_th.jpg" border="0"></a>
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/model_freeze.jpg" rel="lightbox" title=""><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/model_freeze_th.jpg" border="0"></a>
-
</center>
+
</center><br><br>
-
<br><h2>3. Simulations </h2>
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/model_freeze.zip">Click here to download the Freeze model</a><br><br>
 +
 
 +
<h2>3. Simulations </h2>
In figures 1 till 4, simulations are performed with different amounts of lactose and L-arabinose to check the overall working of the system. As expected, lactose is inducing the freeze system resulting in the production of ice nucleating protein (INP). On the other hand, L-arabinose is repressing the system by inducing the production of LuxI. When both lactose and L-arabinose are present in the cellular environment,  INP is initially produced but after a while the concentration of LuxI becomes more significant which will repress the production of INP. The more L-arabinose is added, the faster the production of INP is inhibited resulting in a lower amount of INP produced. These simulations were all performed with estimated values, because accurate values are hard to find. We will investigate the importance of finding more accurate values for some parameters with sensitivity analysis. Sensitivity analysis will give idea about the influence of a parameter on the output results.<br><br>
In figures 1 till 4, simulations are performed with different amounts of lactose and L-arabinose to check the overall working of the system. As expected, lactose is inducing the freeze system resulting in the production of ice nucleating protein (INP). On the other hand, L-arabinose is repressing the system by inducing the production of LuxI. When both lactose and L-arabinose are present in the cellular environment,  INP is initially produced but after a while the concentration of LuxI becomes more significant which will repress the production of INP. The more L-arabinose is added, the faster the production of INP is inhibited resulting in a lower amount of INP produced. These simulations were all performed with estimated values, because accurate values are hard to find. We will investigate the importance of finding more accurate values for some parameters with sensitivity analysis. Sensitivity analysis will give idea about the influence of a parameter on the output results.<br><br>
<center>
<center>
-
<a href="http://www.shbts.nl/igem/images/modeling/graph01.jpg" rel="lightbox" title="Figure 1: Simulation result with lactose induction value 5"><img src="http://www.shbts.nl/igem/images/modeling/graph01_th.jpg" border="0"></a><a href="http://www.shbts.nl/igem/images/modeling/graph02.jpg" rel="lightbox" title="Figure 2: Simulation result with L-arabinose value 5 and lactose value 10"><img src="http://www.shbts.nl/igem/images/modeling/graph02_th.jpg" border="0"></a><br>
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph01.jpg" rel="lightbox" title="Figure 1: Simulation result with lactose induction value 5"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph01_th.jpg" border="0"></a><a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph02.jpg" rel="lightbox" title="Figure 2: Simulation result with L-arabinose value 5 and lactose value 10"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph02_th.jpg" border="0"></a><br>
-
<a href="http://www.shbts.nl/igem/images/modeling/graph03.jpg" rel="lightbox" title="Figure 3: Simulation result with L-arabinose value 10 and lactose value 10"><<img src="http://www.shbts.nl/igem/images/modeling/graph03_th.jpg" border="0"></a><a href="http://www.shbts.nl/igem/images/modeling/graph04.jpg" rel="lightbox" title="Figure 4: Simulation result with L-arabinose value 10 and lactose value 5"><img src="http://www.shbts.nl/igem/images/modeling/graph04_th.jpg" border="0"></a><br>
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph03.jpg" rel="lightbox" title="Figure 3: Simulation result with L-arabinose value 10 and lactose value 10"><<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph03_th.jpg" border="0"></a><a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph04.jpg" rel="lightbox" title="Figure 4: Simulation result with L-arabinose value 10 and lactose value 5"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph04_th.jpg" border="0"></a><br>
</center>
</center>
-
 
+
<br><br>
 +
Fig.A State profile of INP and LuxI
 +
<br><br>
<br><h2>4. Sensitivity analysis</h2>
<br><h2>4. Sensitivity analysis</h2>
Line 195: Line 204:
<center>
<center>
-
<img src="http://www.shbts.nl/igem/images/modeling/graph05.jpg" border="0">
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph05.jpg" border="0">
-
<img src="http://www.shbts.nl/igem/images/modeling/graph06.jpg" border="0">
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph06.jpg" border="0">
</center>
</center>
-
 
+
<br><br>
 +
Fig.B Sensitivity analysis of INP gene
 +
<br><br>
<br><p>Figures 7 till 9 make clear the role of different amounts of lactose and arabinose to the sensitivity of the parameters. When only lactose is present, is the sensitivity of INP transcription kforward1 most important. When both lactose and arabinose are present, the sensitivity of both INP transcription parameters and luxI transcription are important. When only arabinose is present, only INP transcription kforward2 and luxI transcription sensitivities are important. When sensitivity of a parameter is important, then we need to search for accurate value of this parameter. Only then our model, would have good predictive value.<br><br>
<br><p>Figures 7 till 9 make clear the role of different amounts of lactose and arabinose to the sensitivity of the parameters. When only lactose is present, is the sensitivity of INP transcription kforward1 most important. When both lactose and arabinose are present, the sensitivity of both INP transcription parameters and luxI transcription are important. When only arabinose is present, only INP transcription kforward2 and luxI transcription sensitivities are important. When sensitivity of a parameter is important, then we need to search for accurate value of this parameter. Only then our model, would have good predictive value.<br><br>
<center>
<center>
-
<a href="http://www.shbts.nl/igem/images/modeling/graph07.jpg" rel="lightbox" title="Figure 7: sensitivity analysis with lactose value 5 and time-interval 50s"><img src="http://www.shbts.nl/igem/images/modeling/graph07_th.jpg" border="0"></a><a href="http://www.shbts.nl/igem/images/modeling/graph08.jpg" rel="lightbox" title="Figure 8: sensitivity analysis with lactose and L-arabinose value 5 and time-interval 50s"><img src="http://www.shbts.nl/igem/images/modeling/graph08_th.jpg" border="0"></a><br>
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph07.jpg" rel="lightbox" title="Figure 7: sensitivity analysis with lactose value 5 and time-interval 50s"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph07_th.jpg" border="0"></a><a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph08.jpg" rel="lightbox" title="Figure 8: sensitivity analysis with lactose and L-arabinose value 5 and time-interval 50s"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph08_th.jpg" border="0"></a><br>
-
<a href="http://www.shbts.nl/igem/images/modeling/graph09.jpg" rel="lightbox" title="Figure 9: sensitivity-analysis with L-arabinose value 5 and time-interval 50s"><img src="http://www.shbts.nl/igem/images/modeling/graph09_th.jpg" border="0"></a>
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph09.jpg" rel="lightbox" title="Figure 9: sensitivity-analysis with L-arabinose value 5 and time-interval 50s"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/graph09_th.jpg" border="0"></a>
</center>
</center>
-
 
+
<br><br>
 +
Fig.C Another sensitivity analysis of INP gene
 +
<br><br>
<br><br>
<br><br>
</div>
</div>

Latest revision as of 22:26, 28 October 2011

KULeuven iGEM 2011

close
overview     Freeze     Antifreeze     Cell Death


Modeling Freeze


1. Description of the freeze system

Here we will describe the freeze system briefly. The pLac-Lux promoter (BBa_K091100), of the freeze system is negatively regulated through LuxR-AHL complex and positively regulated through lactose. LuxR-AHL production is induced by L-arabinose. When the promoter is positively regulated, four proteins will be transcribed. The first three proteins are responsible for the production of a red lycopene color, while the fourth protein is the ice nucleating protein (INP).



In the freeze model, the following simplification is made: The association of LuxR and HSL is not included. The pLac_lux hybrid promoter (BBa_K091100), of the freeze subsystem is negatively regulated through LuxI and positively regulated through lactose. LuxI production is induced by L-arabinose.

However in the full model the LuxR-HSL association is included.







ODE


2. Freeze Model



Click here to download the Freeze model

3. Simulations

In figures 1 till 4, simulations are performed with different amounts of lactose and L-arabinose to check the overall working of the system. As expected, lactose is inducing the freeze system resulting in the production of ice nucleating protein (INP). On the other hand, L-arabinose is repressing the system by inducing the production of LuxI. When both lactose and L-arabinose are present in the cellular environment, INP is initially produced but after a while the concentration of LuxI becomes more significant which will repress the production of INP. The more L-arabinose is added, the faster the production of INP is inhibited resulting in a lower amount of INP produced. These simulations were all performed with estimated values, because accurate values are hard to find. We will investigate the importance of finding more accurate values for some parameters with sensitivity analysis. Sensitivity analysis will give idea about the influence of a parameter on the output results.


<


Fig.A State profile of INP and LuxI


4. Sensitivity analysis

As output for the sensitivity analysis, we take the concentration of INP because it is the final purpose of this subsystem. As inputparameters we check all the parameters used in the model of this subsystem. Also the concentration of CrtB, CrtE and CrtI can be checked as output, but they will behave identical to INP because we chose the same estimated parameter values as for INP for the transcription, translation and degradation reaction of these proteins.

The sensitivity analysis for INP reveals that in the beginning, shown in figure 5, the transcription parameter has more influence on the output than other parameters. When the time interval is bigger, the sensitivity of degradation parameters is more important than the sensitivity of the transcription parameter. This is shown in figure 6.

Transcription k forward 2 is here unimportant because the only input here is lactose, thus L-arabinose cannot inhibit the system.



Fig.B Sensitivity analysis of INP gene


Figures 7 till 9 make clear the role of different amounts of lactose and arabinose to the sensitivity of the parameters. When only lactose is present, is the sensitivity of INP transcription kforward1 most important. When both lactose and arabinose are present, the sensitivity of both INP transcription parameters and luxI transcription are important. When only arabinose is present, only INP transcription kforward2 and luxI transcription sensitivities are important. When sensitivity of a parameter is important, then we need to search for accurate value of this parameter. Only then our model, would have good predictive value.




Fig.C Another sensitivity analysis of INP gene