Team:Paris Bettencourt/Designs/List

From 2011.igem.org

(Difference between revisions)
 
(8 intermediate revisions not shown)
Line 4: Line 4:
<h1>Design List</h1>
<h1>Design List</h1>
-
<h2>New devices</h2>
+
<h2>Concentrator</h2>
-
<p>We designed entirely these new devices. They are usually composed of an emitter, a receptor and an amplifier sub-unit.</p>
+
<p>In order to observe a celar change in phenotype during diffusion experiments, we worked on a YFP-TetR fusion protein concentrator.</p>
<table>
<table>
<tr>
<tr>
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/GFPLac_diffusion"><img style="width:150px" src="https://static.igem.org/mediawiki/2011/d/d0/YFP_concentration_button.png"></a>
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/GFPLac_diffusion"><img style="width:150px" src="https://static.igem.org/mediawiki/2011/d/d0/YFP_concentration_button.png"></a>
   </td>
   </td>
-
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/GFPLac_diffusion">YFP concentration</a></b> This design relies on a TetO-array which allow us to concentrate YFP-TetR fusion proteins.
+
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/GFPLac_diffusion">YFP concentrator</a></b> This design relies on a TetO-array which allow us to concentrate YFP-TetR fusion proteins.
   </td>
   </td>
</tr>
</tr>
 +
</table>
 +
 +
<h2>Positive feedback autoloop</h2>
 +
<p>We designed entirely these new devices. They are composed of an emitter, a receptor and an amplifier sub-unit.</p>
 +
<table>
<tr>
<tr>
   <td style="width:200px; text-align:center;"><a href="https://2011.igem.org/Team:Paris_Bettencourt/T7_diffusion"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/e/e4/T7_button.png"></a>
   <td style="width:200px; text-align:center;"><a href="https://2011.igem.org/Team:Paris_Bettencourt/T7_diffusion"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/e/e4/T7_button.png"></a>
Line 22: Line 27:
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/tRNA_diffusion"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/5/53/TRNAamber-button.png"></a>
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/tRNA_diffusion"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/5/53/TRNAamber-button.png"></a>
   </td>
   </td>
-
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/tRNA_diffusion">tRNA amber diffusion</a></b> The tRNA amber is the smallest molecule we are trying to get pass the nanotubes.
+
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/tRNA_diffusion">tRNA amber diffusion</a></b> The tRNA amber allows the translation of a functionnal T7 RNA polymerase in the receiver cell. This will then trigger the auto-amplification loop.
   </td>
   </td>
</tr>
</tr>
</table>
</table>
 +
<h2>Using bistable switches</h2>
<h2>Using bistable switches</h2>
-
<p>We noticed that using natural or artificial bistable switches in the receiving cell gave us a receptor and an auto amplifier. One molecule carefully chosen could toggle the switch in another position. All we have to do is see if it diffuses through the nanotubes.
+
 
 +
<p>During our brainstormings, we noticed several natural or artificial bistable switches that could serve both as a receptor and an auto-amplifier. One molecule carefully chosen could toggle the switch in another position. All we have to do is see if it diffuses through the nanotubes.
<table>
<table>
<tr>
<tr>
Line 36: Line 43:
</tr>
</tr>
<tr>
<tr>
-
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/SinOp"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/2/21/ComS-button.png"></a>
+
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/SinOp"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/a/aa/SinOp-button.png"></a>
   </td>
   </td>
-
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/SinOp">Sin Operon</a></b>
+
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/SinOp">Sin Operon</a></b> We took advantage of a switch already existing in <i>B.Subtilis</i> (the Sin operon switch, regulating sporulation and biofilm formation) and tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
   </td>
   </td>
</tr>
</tr>
<tr>
<tr>
-
   <td style="width:200px; text-align:center">Lambda switch<a href="https://2011.igem.org/Team:Paris_Bettencourt/Lambda_switch"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/2/21/ComS-button.png"></a>
+
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/Lambda_switch"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/9/94/Lambda_switch-button.png"></a>
   </td>
   </td>
-
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Lambda_switch">Lambda switch</a></b>
+
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Lambda_switch">Lambda switch</a></b> We took advantage of an artificial switch in <i>E.coli</i> created by the <a href="https://2007.igem.org/Peking">PKU team of 2007</a>. We tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
   </td>
   </td>
</tr>
</tr>
</table>
</table>
 +
 +
<h2>Order of magnitude of size</h2>
 +
 +
<br />
 +
<br />
 +
 +
<center>
 +
<img src="https://static.igem.org/mediawiki/2011/d/d7/Size_chart.png" style="width: 900px;">
 +
</center>
 +
 +
<br />
 +
<br />
<!-- PAGE FOOTER -- ITEMS FROM COLUMN ! HAVE BEEN MOVED HERE  -- RDR  -->
<!-- PAGE FOOTER -- ITEMS FROM COLUMN ! HAVE BEEN MOVED HERE  -- RDR  -->

Latest revision as of 20:11, 28 October 2011

Team IGEM Paris 2011

Design List

Concentrator

In order to observe a celar change in phenotype during diffusion experiments, we worked on a YFP-TetR fusion protein concentrator.

YFP concentrator This design relies on a TetO-array which allow us to concentrate YFP-TetR fusion proteins.

Positive feedback autoloop

We designed entirely these new devices. They are composed of an emitter, a receptor and an amplifier sub-unit.

T7 RNA polymerase diffusion In this design, we introduce the use of the T7 polymerase both as the transfer molecule and as the auto-amplification system.
tRNA amber diffusion The tRNA amber allows the translation of a functionnal T7 RNA polymerase in the receiver cell. This will then trigger the auto-amplification loop.

Using bistable switches

During our brainstormings, we noticed several natural or artificial bistable switches that could serve both as a receptor and an auto-amplifier. One molecule carefully chosen could toggle the switch in another position. All we have to do is see if it diffuses through the nanotubes.

ComS diffusion We took advantage of a switch already existing in B.Subtilis (the ComK/ComS switch) and tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
Sin Operon We took advantage of a switch already existing in B.Subtilis (the Sin operon switch, regulating sporulation and biofilm formation) and tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
Lambda switch We took advantage of an artificial switch in E.coli created by the PKU team of 2007. We tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.

Order of magnitude of size