Team:KULeuven/Modeling

From 2011.igem.org

(Difference between revisions)
 
(69 intermediate revisions not shown)
Line 4: Line 4:
<title>KULeuven iGEM 2011</title>
<title>KULeuven iGEM 2011</title>
-
<link rel="stylesheet" type="text/css" href="http://www.shbts.nl/igem/style/main02.css" media="screen" />
+
<link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/main02.css" media="screen" />
-
<link rel="stylesheet" type="text/css" href="http://www.shbts.nl/igem/style/lightbox.css" media="screen" />
+
<link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/lightbox.css" media="screen" />
<link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'>
<link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/prototype.js"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/prototype.js"></script>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/scriptaculous.js?load=effects,builder"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/scriptaculous.js?load=effects,builder"></script>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/lightbox.js"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/lightbox.js"></script>
<script src="http://widgets.twimg.com/j/2/widget.js"></script>
<script src="http://widgets.twimg.com/j/2/widget.js"></script>
Line 44: Line 44:
<body>
<body>
-
<img src="http://www.shbts.nl/igem/images/bg_team02.jpg" class="bg_team">
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/bg_team02.jpg" class="bg_team">
-
<div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http://www.shbts.nl/igem/images/logo.png" border="0" width="100" height="100"></a></div>
+
<div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/logo.png" border="0" width="100" height="100"></a></div>
-
<div id="logo_igem"><object data="http://www.shbts.nl/igem/html/igemlogo.html" style="overflow:hidden;" type="text/html" width="99" height="80"></object></div>
+
<div id="logo_igem"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/igemlogo.html" style="overflow:hidden;" type="text/html" width="99" height="80"></object></div>
<div id="twitter_widget">
<div id="twitter_widget">
-
<a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http://www.shbts.nl/igem/images/close_button.png" width="10" height="10" style="margin: 0 0 0 140px;" alt="close"></a>
+
<a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/close_button.png" width="10" height="10" style="margin: 0 0 0 140px;" alt="close"></a>
<script>
<script>
new TWTR.Widget({
new TWTR.Widget({
Line 84: Line 84:
</div>
</div>
-
<div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http://www.shbts.nl/igem/images/twitter_allmedia.png" width="120" height="35" border="0" /></a></div>
+
<div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/twitter_allmedia.png" width="120" height="35" border="0" /></a></div>
-
<div id="social_icons"><object data="http://www.shbts.nl/igem/html/social_icons.html" style="overflow:hidden;" type="text/html" width="110" height="24"></object></div>
+
<div id="social_icons"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/social_icons.html" style="overflow:hidden;" type="text/html" width="110" height="24"></object></div>
<div id="centeredmenu_bg"></div>
<div id="centeredmenu_bg"></div>
Line 96: Line 96:
</ul></li>
</ul></li>
-
<li class="on"><a href="https://2011.igem.org/Team:KULeuven/Project">Project</a>
+
<li class="off"><a href="https://2011.igem.org/Team:KULeuven/Description">Project</a>
<ul>
<ul>
<li><a href="#"></a></li>
<li><a href="#"></a></li>
-
<li><a href="https://2011.igem.org/Team:KULeuven/Project">Summary</a></li>
+
<li><a href="https://2011.igem.org/Team:KULeuven/Description">Description</a></li>
-
<li><a href="https://2011.igem.org/Team:KULeuven/Details">Extended</a><li>
+
<li><a href="https://2011.igem.org/Team:KULeuven/Modeling" style="border-bottom:2px solid #000; color:#000;">Modeling</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Modeling" style="border-bottom:2px solid #000; color:#000;">Modeling</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Thermodynamics">Thermodynamics</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Applications">Applications</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Biobricks">Biobricks</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Biobricks">Biobricks</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Notebook">Notebook</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Notebook">Notebook</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Results">Results</a></li>
</ul></li>
</ul></li>
Line 124: Line 126:
<li><a href="https://2011.igem.org/Team:KULeuven/Ethics">Ethics</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Ethics">Ethics</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Safety">Safety</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Safety">Safety</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Law&Patents">Law&Patents</a></li>
</ul></li>
</ul></li>
Line 150: Line 153:
<br><h2>1. Description of the whole system</h2>
<br><h2>1. Description of the whole system</h2>
-
To make predictions for are plasmid transformed E.coli, a structured segregated model is designed in Simbiology. A graphical representation of the model was build in the block diagram editor . Afterwards reaction equations and parameters were added.  
+
To predict and optimize the behaviour of E.D. Frosti, we constructed a model to mathematical describe the biological system. The system can be divided into three subsystems, representing the freeze, antifreeze and cell death mechanism of the bacterial cell. Lactose will induce the freeze system, resulting in the production of the ice nucleating protein (INP). In addition, lactose will repress the antifreeze system, preventing the formation of the antifreeze protein (AFP). On the other hand, L-arabinose is the inducing compound of the antifreeze system and the repressing compound of the freeze system. Upon application in the environment, a cell death mechanism will kill the cells when low temperatures are applied. We designed one model for the whole system and 3 models for 3 subsystems. The 3 subsystems are antifreeze, freeze and cell death. For more information about these 3 subsystems, we refer to the extended <a href="https://2011.igem.org/Team:KULeuven/Details"> project description</a> and the 3 modelling pages: <a href="https://2011.igem.org/Team:KULeuven/Freeze"> freeze</a>, <a href="https://2011.igem.org/Team:KULeuven/Antifreeze"> antifreeze</a> and <a href="https://2011.igem.org/Team:KULeuven/Death">cell death</a>. <br><br>
-
We designed one model for the whole system and 3 models for 3 subsystems. The 3 subsystems are antifreeze, freeze and cell death. For more information about these 3 subsystems, we refer to the extended <a href="https://2011.igem.org/Team:KULeuven/Details"> project description</a> and the 3 modelling pages: <a href="https://2011.igem.org/Team:KULeuven/Freeze"> freeze</a>, <a href="https://2011.igem.org/Team:KULeuven/Antifreeze"> antifreeze</a> and <a href="https://2011.igem.org/Team:KULeuven/Death">cell death</a>.
+
 
-
<br><br>
+
To make predictions for the E.D. Frosti system, a structured segregated model is designed in the MATLAB <a href="http://www.mathworks.nl/products/simbiology/index.html"> Simbiology Toolbox</a> . The kinetic actions (transcription, translation, complexation, ...) that take place in the subsystems can be described by Ordinary Differential Equations (ODEs) like Mass-Action laws, Hill Kinetic laws,<a href="http://www.inrets.fr/ur/lte/publications/publications-pdf/Maurin-publi/Hill-Goutelle,MMet%20+.pdf "> [1]</a> and so on. An extensive search for parameters involved in these ODEs has resulted in the discovery of almost all necessary quantities for the simulations. To summarize the model, we made a PDF-file containing all the ODEs involved in modeling the subsystem, and a file with a clear overview of the used parameters <a href="https://2008.igem.org/Team:KULeuven/Software/Simbiology2LaTeX">[2]</a>. <br><br>
 +
 
 +
<center>
 +
 
 +
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/celldeath_scheme.jpg"><br><br>
 +
 
 +
</center>
<br><h2>2. Full Model </h2>
<br><h2>2. Full Model </h2>
-
There are in total 5 different kinetic equations we used in the model
+
 
-
Transcription equation
+
 
-
For most promoters, hill kinetics is used, it is a way of quantitatively describing cooperative binding processes, it was developed for hemoglobin in 1913. A Hill coefficient (n) is a measure for the cooperativity.
+
<center>
-
Translation equation
+
 
-
RNA degradation
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/full_model.jpg" border="0"><br><br>
-
Protein degration
+
 
-
Assimiliation
+
</center>
 +
 
 +
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/full_model.zip">Click here to download the full model</a><br><br>
 +
 
 +
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/kinetic_parameters.pdf"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/pdf_icon.jpg"> Kinetic parameters</a><br><br>
 +
 
 +
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/reference.pdf"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/pdf_icon.jpg"> Reference</a>
<br><h2>3. Simulation tests</h2>
<br><h2>3. Simulation tests</h2>
-
In the table below the parameters for our full model are displayed. However it was hard to find accurate parameters, because databases for kinetic parameters are limiting.
+
Simulations with different initial amounts of lactose and arabinose were done to check the efficiency of the dual inhibition system. When both arabinose and lactose are present, AFP production as well as INP production should be inhibited. However, the results reveal that there is no inhibition of AFP when the concentration of lactose and arabinose are both set to 1. The production rates of AFP and CeaB are much higher than that of INP formation (Figure 1). The main reason for the difference in protein production is the formation of LuxR-AHL complex, which is a fast reaction compared to other reactions in the system. The LuxR-AHL complex stimulates AFP production and inhibits INP production. Therefore, the rate of AFP production is much higher than the rate of INP production. In addition, the inhibition of AFP production is much lower than the inhibition of INP production.<br><br>
 +
 
 +
The dual inhibition system can be improved by further parameter optimization or structural system changes based on simulations by the model. At the moment, this problem has no effect on the proper working of the E.D. Frosti system, which is the production of AFP or INP when one stimulus is present. We never want to create AFP and INP at the same time.<br><br>
 +
 
 +
<center>
 +
 
 +
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure01_overview.jpg"><br><br>
 +
Figure 1: amount of lactose-arabinose  1-1, huge difference between production of AFP and INP<br><br>
 +
 
 +
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure02_overview.jpg"><br><br>
 +
Figure 2: amount of lactose-arabinose 100-1 after 100 seconds <br><br>
 +
 
 +
</center>
 +
 
 +
<h2>4. Sensitivity Analysis and parameter scan</h2>
 +
 
 +
Sensitivity analysis (SA) is used to examine how the activity of the gene expression in the output of each model can be attributed to different kinetic parameters in the inputs of the model. We can also use this technique to determine the effects of changing variable in the model. The results of sensitivity analysis for each submodel are shown in the subsystem pages.
 +
<br><br><br><br>
 +
 
-
<p>The parameters used in this model are:</p>
 
-
<table class="parameter">
 
-
<tr>
 
-
<th>Parameter</th>
 
-
<th>Description</th>
 
-
<th style="width:80px;">Value</th>
 
-
<th>Reference</th>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/f/f2/LacI_concentration.png' style='height:22px;'></td>
 
-
<td>Active LacI concentration (LacI which is not inactivated by IPTG)</td>
 
-
<td>NA</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/f/f7/IPTG_concentration.png' style='height:22px;'></td>
 
-
<td>IPTG concentration</td>
 
-
<td>NA</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/5/5e/LacI_inact_concentration.png' style='height:22px;'></td>
 
-
<td>Inactived LacI concentration</td>
 
-
<td>NA</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/e/e3/LacI_tot_concentration.png' style='height:22px;'></td>
 
-
<td>Total LacI concentration</td>
 
-
<td>TBD</td>
 
-
<td>Steady state for equation</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/c/cd/T7%27_concentration.png' style='height:22px;'></td>
 
-
<td>T7 RNA polymerase (emitter, T7') concentration</td>
 
-
<td>NA</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/8/89/MRNA_T7%27_concentration.png' style='height:22px;'></td>
 
-
<td>mRNA associated with T7' concentration</td>
 
-
<td>NA</td>
 
-
<td>molecules <br>per cell</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/3/35/T7%27%27_concentration.png' style='height:22px;'></td>
 
-
<td>T7 RNA polymerase (auto-amplification, T7'') concentration</td>
 
-
<td>NA</td>
 
-
<td>molecules <br>per cell</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/3/37/MRNA_T7%27%27_concentration.png' style='height:22px;'></td>
 
-
<td>mRNA associated with T7'' concentration</td>
 
-
<td>NA</td>
 
-
<td>molecules <br>per cell</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/f/f5/GFP_concentration.png' style='height:22px;'></td>
 
-
<td>GFP concentration</td>
 
-
<td>NA</td>
 
-
<td>molecules <br>per cell</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/5/5f/MRNA_GFP_concentration.png' style='height:22px;'></td>
 
-
<td>mRNA associated with GFP concentration</td>
 
-
<td>NA</td>
 
-
<td>molecules <br>per cell</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/4/47/RFP_concentration.png' style='height:22px;'></td>
 
-
<td>RFP concentration</td>
 
-
<td>NA</td>
 
-
<td>molecules <br>per cell</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/1/17/MRNA_RFP_concentration.png' style='height:22px;'></td>
 
-
<td>mRNA associated with RFP concentration</td>
 
-
<td>NA</td>
 
-
<td>molecules <br>per cell</td>
 
-
<td>Notation convention</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/6/63/Beta_const.png' style='height:22px;' /></td>
 
-
<td>Maximal production rate of pVeg promoter (constitutive)</td>
 
-
<td>0.02</td>
 
-
<td>molecules.s<sup>-1</sup> <br>or pops</td>
 
-
<td>Estimated, see the <a href="https://2011.igem.org/Team:Paris_Bettencourt/Modeling/Promoter_strengths">justification</a></td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/d/d9/BetapLac.png' style='height:22px;' /></td>
 
-
<td>Maximal production rate of pLac promoter</td>
 
-
<td>0.02</td>
 
-
<td>molecules.s<sup>-1</sup> <br>or pops</td>
 
-
<td>Estimated, see the <a href="https://2011.igem.org/Team:Paris_Bettencourt/Modeling/Promoter_strengths">justification</a></td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/5/5d/BetapT7.png' style='height:22px;' /></td>
 
-
<td>Maximal production rate of pT7 promoter</td>
 
-
<td>0.02</td>
 
-
<td>molecules.s<sup>-1</sup> <br>or pops</td>
 
-
<td>Estimated, see the <a href="https://2011.igem.org/Team:Paris_Bettencourt/Modeling/Promoter_strengths">justification</a></td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/7/72/KIPTGLacI.png' style='height:22px;' /></td>
 
-
<td>Dissociation constant for IPTG to LacI</td>
 
-
<td>1200</td>
 
-
<td>molecules <br>per cell</td>
 
-
<td><a href='https://2009.igem.org/Team:Aberdeen_Scotland/parameters/invest_1'>Aberdeen 2009 wiki</a></td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/0/0c/KLacI.png' style='height:22px;' /></td>
 
-
<td>Dissociation constant for LacI to LacO (pLac)</td>
 
-
<td>700</td>
 
-
<td>molecules <br>per cell</td>
 
-
<td><a href='https://2009.igem.org/Team:Aberdeen_Scotland/parameters/invest_1'>Aberdeen 2009 wiki</a></td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/5/5d/KT7.png' style='height:22px;' /></td>
 
-
<td>Dissociation constant for T7 RNA polymerase to pT7</td>
 
-
<td>10</td>
 
-
<td>molecules <br>per cell</td>
 
-
<td>We used the classic assumption 1nM=1 molecule per cell and <a href="https://2011.igem.org/Team:Paris_Bettencourt/Modeling/tRNA_diffusion#references">[1]</a></td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/a/a3/Gamma_protein.png' style='height:22px;'  /></td>
 
-
<td>Translation rate of proteins</td>
 
-
<td>0.9</td>
 
-
<td>s<sup>-1</sup></td>
 
-
<td>Estimated, see the <a href="https://2011.igem.org/Team:Paris_Bettencourt/Modeling/Protein_translation_rate_justification">justification</a></td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/0/05/Delta_dil.png' style='height:22px;' /></td>
 
-
<td>Dilution rate in exponential phase</td>
 
-
<td>2.88x10<sup>-4</sup></td>
 
-
<td>s<sup>-1</sup></td>
 
-
<td>Calculated with a 40 min generation time. See explanation</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/7/7d/Delta_mrna.png' style='height:22px;' /></td>
 
-
<td>Degradation rate of mRNA</td>
 
-
<td>2.88x10<sup>-3</sup></td>
 
-
<td>s<sup>-1</sup></td>
 
-
<td>Uri Alon (To Be Confirmed)</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/9/95/Delta_GFP.png' style='height:22px;' /></td>
 
-
<td>Degradation rate of GFP</td>
 
-
<td>10<sup>-4</sup></td>
 
-
<td>s<sup>-1</sup></td>
 
-
<td><a href="http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=105188&ver=2&hlid=56398">BioNumbers</a></td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/1/1c/Delta_RFP.png' style='height:22px;' /></td>
 
-
<td>Degradation rate of RFP</td>
 
-
<td>10<sup>-4</sup></td>
 
-
<td>s<sup>-1</sup></td>
 
-
<td>Estimated equal to GFP degradation rate</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/a/a8/TT7.png' style='height:22px;'/></td>
 
-
<td>Delay due to T7 RNA polymerase production and maturation</td>
 
-
<td>300</td>
 
-
<td>s</td>
 
-
<td><a href="https://2011.igem.org/Team:Paris_Bettencourt/Modeling/tRNA_diffusion#references">[2]</a></td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/f/f0/TGFP.png' style='height:22px;'/></td>
 
-
<td>Delay due to GFP production and maturation</td>
 
-
<td>360</td>
 
-
<td>s</td>
 
-
<td><a href="http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=102972&ver=8">BioNumbers</a></td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/b/bc/TRFP.png' style='height:22px;'/></td>
 
-
<td>Delay due to RFP production and maturation</td>
 
-
<td>360</td>
 
-
<td>s</td>
 
-
<td>Estimated equal to GFP delay (similar molecules)</td>
 
-
</tr>
 
-
<tr>
 
-
<td><img src='https://static.igem.org/mediawiki/2011/9/9c/TmRNA.png' style='height:22px;' /></td>
 
-
<td>Delay due to mRNA production</td>
 
-
<td>30</td>
 
-
<td>s</td>
 
-
<td><a href="http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=104902&ver=5&hlid=58815 2kb">BioNumbers</a> with an approximation: all our contructs are around 1-2kb</td>
 
-
</tr>
 
-
</table>
 
-
<div id="citation_box">
 
-
<p id="references">References</p>
 
-
<ol>
 
-
<li><i>Cytoplasmic expression of a reporter gene by co-delivery of T7 RNA polymerase and T7 promoter sequence with cationic liposomes</i>,
 
-
X Gao and L Huang, accessible <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC309671/pdf/nar00061-0090.pdf">here</a></li>
 
-
<li><i>Molecular Biology for Masters</i> by Dr. G. R. Kantharaj, accessible<a href="http://mol-biol4masters.masters.grkraj.org/html/Prokaryotic_DNA_Replication13-T7_Phage_DNA_Replication.htm"> here</a></li>
 
-
<ol>
 
</div>
</div>

Latest revision as of 12:45, 27 October 2011

KULeuven iGEM 2011

close
overview     Freeze     Antifreeze     Cell Death


Modeling Overview


1. Description of the whole system

To predict and optimize the behaviour of E.D. Frosti, we constructed a model to mathematical describe the biological system. The system can be divided into three subsystems, representing the freeze, antifreeze and cell death mechanism of the bacterial cell. Lactose will induce the freeze system, resulting in the production of the ice nucleating protein (INP). In addition, lactose will repress the antifreeze system, preventing the formation of the antifreeze protein (AFP). On the other hand, L-arabinose is the inducing compound of the antifreeze system and the repressing compound of the freeze system. Upon application in the environment, a cell death mechanism will kill the cells when low temperatures are applied. We designed one model for the whole system and 3 models for 3 subsystems. The 3 subsystems are antifreeze, freeze and cell death. For more information about these 3 subsystems, we refer to the extended project description and the 3 modelling pages: freeze, antifreeze and cell death.

To make predictions for the E.D. Frosti system, a structured segregated model is designed in the MATLAB Simbiology Toolbox . The kinetic actions (transcription, translation, complexation, ...) that take place in the subsystems can be described by Ordinary Differential Equations (ODEs) like Mass-Action laws, Hill Kinetic laws, [1] and so on. An extensive search for parameters involved in these ODEs has resulted in the discovery of almost all necessary quantities for the simulations. To summarize the model, we made a PDF-file containing all the ODEs involved in modeling the subsystem, and a file with a clear overview of the used parameters [2].




2. Full Model



Click here to download the full model

Kinetic parameters

Reference

3. Simulation tests

Simulations with different initial amounts of lactose and arabinose were done to check the efficiency of the dual inhibition system. When both arabinose and lactose are present, AFP production as well as INP production should be inhibited. However, the results reveal that there is no inhibition of AFP when the concentration of lactose and arabinose are both set to 1. The production rates of AFP and CeaB are much higher than that of INP formation (Figure 1). The main reason for the difference in protein production is the formation of LuxR-AHL complex, which is a fast reaction compared to other reactions in the system. The LuxR-AHL complex stimulates AFP production and inhibits INP production. Therefore, the rate of AFP production is much higher than the rate of INP production. In addition, the inhibition of AFP production is much lower than the inhibition of INP production.

The dual inhibition system can be improved by further parameter optimization or structural system changes based on simulations by the model. At the moment, this problem has no effect on the proper working of the E.D. Frosti system, which is the production of AFP or INP when one stimulus is present. We never want to create AFP and INP at the same time.



Figure 1: amount of lactose-arabinose 1-1, huge difference between production of AFP and INP



Figure 2: amount of lactose-arabinose 100-1 after 100 seconds

4. Sensitivity Analysis and parameter scan

Sensitivity analysis (SA) is used to examine how the activity of the gene expression in the output of each model can be attributed to different kinetic parameters in the inputs of the model. We can also use this technique to determine the effects of changing variable in the model. The results of sensitivity analysis for each submodel are shown in the subsystem pages.