Team:KULeuven/Modeling

From 2011.igem.org

(Difference between revisions)
 
(101 intermediate revisions not shown)
Line 4: Line 4:
<title>KULeuven iGEM 2011</title>
<title>KULeuven iGEM 2011</title>
-
<link rel="stylesheet" type="text/css" href="http://www.shbts.nl/igem/style/main02.css" media="screen" />
+
<link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/main02.css" media="screen" />
-
<link rel="stylesheet" type="text/css" href="http://www.shbts.nl/igem/style/lightbox.css" media="screen" />
+
<link rel="stylesheet" type="text/css" href="http://homes.esat.kuleuven.be/~igemwiki/style/lightbox.css" media="screen" />
<link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'>
<link href='http://fonts.googleapis.com/css?family=Francois+One&v2' rel='stylesheet' type='text/css'>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/prototype.js"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/prototype.js"></script>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/scriptaculous.js?load=effects,builder"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/scriptaculous.js?load=effects,builder"></script>
-
<script type="text/javascript" src="http://www.shbts.nl/igem/scripts/lightbox.js"></script>
+
<script type="text/javascript" src="http://homes.esat.kuleuven.be/~igemwiki/scripts/lightbox.js"></script>
<script src="http://widgets.twimg.com/j/2/widget.js"></script>
<script src="http://widgets.twimg.com/j/2/widget.js"></script>
 +
 +
<style type="text/css">
 +
 +
#modeling_submenu{
 +
position:relative;
 +
top:0px;
 +
left:-50px;
 +
margin:0 auto;
 +
width:680px;
 +
height:35px;
 +
text-align:center;
 +
background:#fff;
 +
padding:0;
 +
}
 +
#modeling_submenu a{
 +
font-family: 'Francois One', sans-serif, verdana, geneva;
 +
color:#666;
 +
font-size:12px;
 +
text-transform:uppercase;
 +
letter-spacing:1px;
 +
margin:5px 0 0 0;
 +
}
 +
#modeling_submenu a:hover{
 +
color:#000;
 +
}
 +
</style>
</head>
</head>
Line 18: Line 44:
<body>
<body>
-
<img src="http://www.shbts.nl/igem/images/bg_team02.jpg" class="bg_team">
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/bg_team02.jpg" class="bg_team">
-
<div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http://www.shbts.nl/igem/images/logo.png" border="0" width="100" height="100"></a></div>
+
<div id="logo_ed"><a href="https://2011.igem.org/Team:KULeuven" 'onfocus=this.blur()'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/logo.png" border="0" width="100" height="100"></a></div>
-
<div id="logo_igem"><object data="http://www.shbts.nl/igem/html/igemlogo.html" style="overflow:hidden;" type="text/html" width="99" height="80"></object></div>
+
<div id="logo_igem"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/igemlogo.html" style="overflow:hidden;" type="text/html" width="99" height="80"></object></div>
<div id="twitter_widget">
<div id="twitter_widget">
-
<a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http://www.shbts.nl/igem/images/close_button.png" width="10" height="10" style="margin: 0 0 0 140px;" alt="close"></a>
+
<a href="#" onfocus='blur()' onclick='javascript:this.parentNode.style.display="none"; return false;'><img src="http://homes.esat.kuleuven.be/~igemwiki/images/close_button.png" width="10" height="10" style="margin: 0 0 0 140px;" alt="close"></a>
<script>
<script>
new TWTR.Widget({
new TWTR.Widget({
Line 58: Line 84:
</div>
</div>
-
<div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http://www.shbts.nl/igem/images/twitter_allmedia.png" width="120" height="35" border="0" /></a></div>
+
<div id="social_linkall"><a href="http://bit.ly/qebk0N" target="_blank"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/twitter_allmedia.png" width="120" height="35" border="0" /></a></div>
-
<div id="social_icons"><object data="http://www.shbts.nl/igem/html/social_icons.html" style="overflow:hidden;" type="text/html" width="110" height="24"></object></div>
+
<div id="social_icons"><object data="http://homes.esat.kuleuven.be/~igemwiki/html/social_icons.html" style="overflow:hidden;" type="text/html" width="110" height="24"></object></div>
<div id="centeredmenu_bg"></div>
<div id="centeredmenu_bg"></div>
<ul id="nav">
<ul id="nav">
-
        <li><a href="#"></a></li>
+
 
<li class="off"><a href="https://2011.igem.org/Team:KULeuven">Home</a>
<li class="off"><a href="https://2011.igem.org/Team:KULeuven">Home</a>
     <ul>
     <ul>
Line 70: Line 96:
</ul></li>
</ul></li>
-
<li class="on"><a href="https://2011.igem.org/Team:KULeuven/Project">Project</a>
+
<li class="off"><a href="https://2011.igem.org/Team:KULeuven/Description">Project</a>
<ul>
<ul>
<li><a href="#"></a></li>
<li><a href="#"></a></li>
-
<li><a href="https://2011.igem.org/Team:KULeuven/Project">Overview</a></li>
+
<li><a href="https://2011.igem.org/Team:KULeuven/Description">Description</a></li>
-
<li><a href="https://2011.igem.org/Team:KULeuven/Wetlab">Wetlab</a><li>
+
-
<li><a href="https://2011.igem.org/Team:KULeuven/Input">Input</a></li>
+
-
<li><a href="https://2011.igem.org/Team:KULeuven/Afp">AFP</a></li>
+
-
<li><a href="https://2011.igem.org/Team:KULeuven/Inp">INP</a></li>
+
<li><a href="https://2011.igem.org/Team:KULeuven/Modeling" style="border-bottom:2px solid #000; color:#000;">Modeling</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Modeling" style="border-bottom:2px solid #000; color:#000;">Modeling</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Thermodynamics">Thermodynamics</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Applications">Applications</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Biobricks">Biobricks</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Biobricks">Biobricks</a></li>
-
<li><a href="https://2011.igem.org/Team:KULeuven/Details">Details</a></li>
 
<li><a href="https://2011.igem.org/Team:KULeuven/Notebook">Notebook</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Notebook">Notebook</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Results">Results</a></li>
</ul></li>
</ul></li>
Line 89: Line 113:
</ul></li>
</ul></li>
-
<li class="off"><a href="https://2011.igem.org/Team:KULeuven/Safety">Human Practice</a>
+
<li class="off"><a href="https://2011.igem.org/Team:KULeuven/Workshop">Human Practice</a>
<ul>
<ul>
<li><a href="#"></a></li>
<li><a href="#"></a></li>
Line 99: Line 123:
<li><a href="#"></a></li>
<li><a href="#"></a></li>
<li><a href="#"></a></li>
<li><a href="#"></a></li>
-
<li><a href="https://2011.igem.org/Team:KULeuven/Safety">Safety</a></li>
+
<li><a href="https://2011.igem.org/Team:KULeuven/Workshop">Education</a></li>
-
<li><a href="https://2011.igem.org/Team:KULeuven/Workshop">Workshop</a></li>
+
-
<li><a href="https://2011.igem.org/Team:KULeuven/Debate">Debate</a></li>
+
<li><a href="https://2011.igem.org/Team:KULeuven/Ethics">Ethics</a></li>
<li><a href="https://2011.igem.org/Team:KULeuven/Ethics">Ethics</a></li>
 +
<li><a href="https://2011.igem.org/Team:KULeuven/Safety">Safety</a></li>
 +
                <li><a href="https://2011.igem.org/Team:KULeuven/Law&Patents">Law&Patents</a></li>
</ul></li>
</ul></li>
Line 110: Line 134:
</ul></li>
</ul></li>
-
<li class="off"><a href="https://2011.igem.org/Team:KULeuven/Attributions">Attributions</a>
+
<li class="off"><a href="https://2011.igem.org/Team:KULeuven/Acknowledgments">Acknowledgments</a>
 +
    <ul>
 +
<li><a href="#"></a></li>
 +
</ul></li>
 +
 
 +
<li class="off"><a href="https://2011.igem.org/Team:KULeuven/Data">Data</a>
     <ul>
     <ul>
<li><a href="#"></a></li>
<li><a href="#"></a></li>
Line 118: Line 147:
<div id="contentbox" style="text-align:justify;">
<div id="contentbox" style="text-align:justify;">
-
<h3>Modeling Freeze</h3>
+
<div id="modeling_submenu"><a href="https://2011.igem.org/Team:KULeuven/Modeling" style="color:#000; border-bottom:2px solid #000;">overview</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Freeze">Freeze</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Antifreeze">Antifreeze</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<a href="https://2011.igem.org/Team:KULeuven/Death">Cell Death</a></div>
 +
<br><br>
-
<br><h2>1. Description of biobricks in freeze system</h2>
+
<h3>Modeling Overview</h3>
-
The promoter, pLac_lux hybrid promoter (BBa_K091100), of the freeze subsystem is negatively regulated through LuxI and positively regulated through lactose. LuxI production is induced by L-arabinose.
+
-
<br><p>PIJLTJESSCHEMA
+
<br><h2>1. Description of the whole system</h2>
 +
To predict and optimize the behaviour of E.D. Frosti, we constructed a model to mathematical describe the biological system. The system can be divided into three subsystems, representing the freeze, antifreeze and cell death mechanism of the bacterial cell. Lactose will induce the freeze system, resulting in the production of the ice nucleating protein (INP). In addition, lactose will repress the antifreeze system, preventing the formation of the antifreeze protein (AFP). On the other hand, L-arabinose is the inducing compound of the antifreeze system and the repressing compound of the freeze system. Upon application in the environment, a cell death mechanism will kill the cells when low temperatures are applied. We designed one model for the whole system and 3 models for 3 subsystems. The 3 subsystems are antifreeze, freeze and cell death. For more information about these 3 subsystems, we refer to the extended <a href="https://2011.igem.org/Team:KULeuven/Details"> project description</a> and the 3 modelling pages: <a href="https://2011.igem.org/Team:KULeuven/Freeze"> freeze</a>, <a href="https://2011.igem.org/Team:KULeuven/Antifreeze"> antifreeze</a> and <a href="https://2011.igem.org/Team:KULeuven/Death">cell death</a>.  <br><br>
-
<br><p>BIOBRICKSCHEMA
+
To make predictions for the E.D. Frosti system, a structured segregated model is designed in the MATLAB <a href="http://www.mathworks.nl/products/simbiology/index.html"> Simbiology Toolbox</a> . The kinetic actions (transcription, translation, complexation, ...) that take place in the subsystems can be described by Ordinary Differential Equations (ODEs) like Mass-Action laws, Hill Kinetic laws,<a href="http://www.inrets.fr/ur/lte/publications/publications-pdf/Maurin-publi/Hill-Goutelle,MMet%20+.pdf "> [1]</a> and so on. An extensive search for parameters involved in these ODEs has resulted in the discovery of almost all necessary quantities for the simulations. To summarize the model, we made a PDF-file containing all the ODEs involved in modeling the subsystem, and a file with a clear overview of the used parameters <a href="https://2008.igem.org/Team:KULeuven/Software/Simbiology2LaTeX">[2]</a>. <br><br>
 +
<center>
-
<br><h2>3. ODE </h2>
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/celldeath_scheme.jpg"><br><br>
-
ODE
+
</center>
-
<br><h2>4. Parameters </h2>
+
<br><h2>2. Full Model </h2>
-
PARAMETER TABLE
 
-
<br><h2>5. Freeze Model </h2>
+
<center>
-
MODEL
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/full_model.jpg" border="0"><br><br>
-
<br><h2>6. Simulations </h2>
+
</center>
-
In graphs 1 till 4, simulations are performed with different amounts of lactose and L-arabinose to check the overall working of the system. As expected, lactose is inducing the freeze system resulting in the production of ice nucleating protein (INP). On the other hand, L-arabinose is repressing the system by inducing the production of LuxI. When both lactose and L-arabinose are present in the cellular environment,  INP is initially produced but after a while the concentration of LuxI becomes more significant which will repress the production of INP. The more L-arabinose is added, the faster the production of INP is inhibited resulting in a lower amount of INP produced. These simulations were all performed with estimated values, because accurate values are hard to find. We will investigate the importance of finding more accurate values for some parameters with sensitivity analysis. Sensitivity analysis will give idea about the influence of a parameter on the output results.
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/full_model.zip">Click here to download the full model</a><br><br>
-
<br><p>GRAFIEKEN 1 TOT 4
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/kinetic_parameters.pdf"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/pdf_icon.jpg"> Kinetic parameters</a><br><br>
-
<br><h2>7. Sensitivity analysis</h2>
+
<a href="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/reference.pdf"><img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/pdf_icon.jpg"> Reference</a>
-
As output for the sensitivity analysis, we take the concentration of INP because it is the final purpose of this subsystem. As inputparameters we check all the parameters used in the model of this subsystem. Also the concentration of CrtB, CrtE and CrtI can be checked as output, but they will behave identical to INP because we chose the same estimated parameter values as for INP for  the transcription, translation and degradation reaction of these proteins.
+
<br><h2>3. Simulation tests</h2>
-
<br><p>The sensitivity analysis for INP reveals that in the beginning, shown in figure 5, the transcription parameter has more influence on the output than other parameters. When the time interval is bigger, the sensitivity of degradation parameters is more important than the sensitivity of the transcription parameter. This is shown in figure 6.
+
Simulations with different initial amounts of lactose and arabinose were done to check the efficiency of the dual inhibition system. When both arabinose and lactose are present, AFP production as well as INP production should be inhibited. However, the results reveal that there is no inhibition of AFP when the concentration of lactose and arabinose are both set to 1. The production rates of AFP and CeaB are much higher than that of INP formation (Figure 1). The main reason for the difference in protein production is the formation of LuxR-AHL complex, which is a fast reaction compared to other reactions in the system. The LuxR-AHL complex stimulates AFP production and inhibits INP production. Therefore, the rate of AFP production is much higher than the rate of INP production. In addition, the inhibition of AFP production is much lower than the inhibition of INP production.<br><br>
-
<br><p>Transcription k forward 2 is here unimportant because the only input here is lactose, thus L-arabinose cannot inhibit the system.
+
The dual inhibition system can be improved by further parameter optimization or structural system changes based on simulations by the model. At the moment, this problem has no effect on the proper working of the E.D. Frosti system, which is the production of AFP or INP when one stimulus is present. We never want to create AFP and INP at the same time.<br><br>
-
<br><p>GRAFIEKEN 5 en 6
+
<center>
-
<br><p>Graphics 7 till 9 make clear the role of different amounts of lactose and arabinose to the sensitivity of the parameters. When only lactose is present, is the sensitivity of INP transcription kforward1 most important. When both lactose and arabinose are present, the sensitivity of both INP transcription parameters and luxI transcription are important. When only arabinose is present, only INP transcription kforward2 and luxI transcription sensitivities are important. When sensitivity of a parameter is important, then we need to search for accurate value of this parameter. Only then our model, would have good predictive value.
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure01_overview.jpg"><br><br>
 +
Figure 1: amount of lactose-arabinose 1-1, huge difference between production of AFP and INP<br><br>
-
<br><p>GRAFIEKEN 7 tot 9
+
<img src="http://homes.esat.kuleuven.be/~igemwiki/images/modeling/figure02_overview.jpg"><br><br>
 +
Figure 2: amount of lactose-arabinose 100-1 after 100 seconds <br><br>
 +
</center>
 +
 +
<h2>4. Sensitivity Analysis and parameter scan</h2>
 +
 +
Sensitivity analysis (SA) is used to examine how the activity of the gene expression in the output of each model can be attributed to different kinetic parameters in the inputs of the model. We can also use this technique to determine the effects of changing variable in the model. The results of sensitivity analysis for each submodel are shown in the subsystem pages.
 +
<br><br><br><br>
 +
 +
 +
 +
 +
</div>
 +
<br><br>
</div>
</div>

Latest revision as of 12:45, 27 October 2011

KULeuven iGEM 2011

close
overview     Freeze     Antifreeze     Cell Death


Modeling Overview


1. Description of the whole system

To predict and optimize the behaviour of E.D. Frosti, we constructed a model to mathematical describe the biological system. The system can be divided into three subsystems, representing the freeze, antifreeze and cell death mechanism of the bacterial cell. Lactose will induce the freeze system, resulting in the production of the ice nucleating protein (INP). In addition, lactose will repress the antifreeze system, preventing the formation of the antifreeze protein (AFP). On the other hand, L-arabinose is the inducing compound of the antifreeze system and the repressing compound of the freeze system. Upon application in the environment, a cell death mechanism will kill the cells when low temperatures are applied. We designed one model for the whole system and 3 models for 3 subsystems. The 3 subsystems are antifreeze, freeze and cell death. For more information about these 3 subsystems, we refer to the extended project description and the 3 modelling pages: freeze, antifreeze and cell death.

To make predictions for the E.D. Frosti system, a structured segregated model is designed in the MATLAB Simbiology Toolbox . The kinetic actions (transcription, translation, complexation, ...) that take place in the subsystems can be described by Ordinary Differential Equations (ODEs) like Mass-Action laws, Hill Kinetic laws, [1] and so on. An extensive search for parameters involved in these ODEs has resulted in the discovery of almost all necessary quantities for the simulations. To summarize the model, we made a PDF-file containing all the ODEs involved in modeling the subsystem, and a file with a clear overview of the used parameters [2].




2. Full Model



Click here to download the full model

Kinetic parameters

Reference

3. Simulation tests

Simulations with different initial amounts of lactose and arabinose were done to check the efficiency of the dual inhibition system. When both arabinose and lactose are present, AFP production as well as INP production should be inhibited. However, the results reveal that there is no inhibition of AFP when the concentration of lactose and arabinose are both set to 1. The production rates of AFP and CeaB are much higher than that of INP formation (Figure 1). The main reason for the difference in protein production is the formation of LuxR-AHL complex, which is a fast reaction compared to other reactions in the system. The LuxR-AHL complex stimulates AFP production and inhibits INP production. Therefore, the rate of AFP production is much higher than the rate of INP production. In addition, the inhibition of AFP production is much lower than the inhibition of INP production.

The dual inhibition system can be improved by further parameter optimization or structural system changes based on simulations by the model. At the moment, this problem has no effect on the proper working of the E.D. Frosti system, which is the production of AFP or INP when one stimulus is present. We never want to create AFP and INP at the same time.



Figure 1: amount of lactose-arabinose 1-1, huge difference between production of AFP and INP



Figure 2: amount of lactose-arabinose 100-1 after 100 seconds

4. Sensitivity Analysis and parameter scan

Sensitivity analysis (SA) is used to examine how the activity of the gene expression in the output of each model can be attributed to different kinetic parameters in the inputs of the model. We can also use this technique to determine the effects of changing variable in the model. The results of sensitivity analysis for each submodel are shown in the subsystem pages.