|
|
(11 intermediate revisions not shown) |
Line 463: |
Line 463: |
| <div class="writeback"> | | <div class="writeback"> |
| <h3>Methan<b>E.COLI</b>c : Decreasing the Greenhouse effects and Saving the workers life in one system</h3> | | <h3>Methan<b>E.COLI</b>c : Decreasing the Greenhouse effects and Saving the workers life in one system</h3> |
- | <p>Firedamp explosions are frequently seen cases at all mines over the world. In Turkey every year, 50 miners lose their lives because of firedamp explosions. Firedamp is a flammable gas found in coal mines and it mainly contains methane. Beside its explosive property, methane is also the main contributor to global warming. However recent mine mechanisms release obtained methane into air. By offers of Synthetic biology, we aimed to design a device which will work on E.coli that provides solutions for side effects of methane. Device that we are planning to construct involves the genes of bacteria (Methylococcus capsulatus) and insect (Drosophilia melanogaster) Our compact system in E.coli is fabricated as sensation of methane, the conversion of methane to methanol and then entrapment of methanol to handle for biofuel and death of bacteria at 42 C by kill switch mechanism.</p> | + | <p>Firedamp explosions are frequently seen cases at all mines over the world. In Turkey every year, 50 miners lose their lives because of firedamp explosions. Firedamp is a flammable gas found in coal mines and it mainly contains methane. Beside its explosive property, methane is also the main contributor to global warming. However recent mine mechanisms release obtained methane into air. By offers of Synthetic biology, we aimed to design a device which will work on <i>E.coli</i> that provides solutions for side effects of methane. Device that we are planning to construct involves the genes of bacteria (<i>Methylococcus capsulatus</i>) and insect (<i>Drosophilia melanogaster</i>). Our compact system in <i>E.coli</i> is fabricated as sensation of methane, the conversion of methane to methanol and then entrapment of methanol to handle for biofuel and death of bacteria at 42 C by kill switch mechanism.</p> |
| <p>When project is analyzed in stepwise, there are successive 4 steps of our modelled system in modified organism. As mentioned in subtitles, methane is sensed, then converted to methanol and methanol is entrapped and to elute methanol the cells are dead. </p> | | <p>When project is analyzed in stepwise, there are successive 4 steps of our modelled system in modified organism. As mentioned in subtitles, methane is sensed, then converted to methanol and methanol is entrapped and to elute methanol the cells are dead. </p> |
| </div> | | </div> |
Line 616: |
Line 616: |
| </div> | | </div> |
| | | |
- | <div class="smallbox">
| + | |
- | <h2><a href="mailto:cihanefe@gmail.com">Cihan Efe KILIC</a></h2>
| + | |
- | <img width="130px" height="180px" src="https://static.igem.org/mediawiki/2011/a/a8/Cihan.jpg">
| + | |
- | <div class="smalltext">
| + | |
- | <p>He is a third year student at the Department of Chemistry at Middle East Technical University. This is the first year of his in iGEM team. He faced synthetic biology on his Biochemistry course. He wants to study on the Electrochemistry-Enzyme immobilization. He believes that synthetic biology will give some benefits for his future work. He likes team working and sharing the success. He likes to cool staff with liquid nitrogen. He enjoys playing musical instruments flute and martial arts.</p>
| + | |
- | </div>
| + | |
- | </div>
| + | |
| | | |
| <div class="smallbox"> | | <div class="smallbox"> |
Line 683: |
Line 677: |
| <img src="https://static.igem.org/mediawiki/2011/2/28/Wetlabheader.png" height="75px" width="890px"> | | <img src="https://static.igem.org/mediawiki/2011/2/28/Wetlabheader.png" height="75px" width="890px"> |
| <h2>WET LAB</h2> | | <h2>WET LAB</h2> |
- | <p>Whole summer in lab work we aimed to design 7 new E.coli compatible Biobricks and 1 composite part from 2011 kit plate distributions, also we aimed to characterize each part by protein analysis and fluorescence protein measurements.</p> | + | <p>Whole summer in lab work we aimed to design 7 new <i>E.coli</i> compatible Biobricks and 1 composite part from 2011 kit plate distributions, also we aimed to characterize each part by protein analysis and fluorescence protein measurements.</p> |
| | | |
- | <p>We achieved design and compatibility of parts in E.coli, however not all parts’ characterization is achieved. Only the genes of designed composite part from kit plate is characterized by GFP measurements.</p> | + | <p>We achieved design and compatibility of parts in <i>E.coli</i>, however not all parts’ characterization is achieved. Only the genes of designed composite part from kit plate is characterized by GFP measurements.</p> |
| | | |
- | <p>In this section you can find out more details on all our wet lab works. You can also find our data under results subtitle and information about design of our parts-biobricks with explanations in literature. It also contains materials and protocols, and finally There is safety questions list on our safety considerations both in the lab and on a wider environmental scale.</p> | + | <p>In this section you can find out more details on all our wet lab works. You can also find our data under results subtitle and information about design of our parts-biobricks with explanations in literature. It also contains materials and protocols, and finally there is safety questions list on our safety considerations both in the lab and on a wider environmental scale.</p> |
| | | |
| | | |
Line 702: |
Line 696: |
| <img src="https://static.igem.org/mediawiki/2011/1/1b/Humanpractice.png" height="75px" width="890px"> | | <img src="https://static.igem.org/mediawiki/2011/1/1b/Humanpractice.png" height="75px" width="890px"> |
| <h2>Overview</h2> | | <h2>Overview</h2> |
- | <p>Methan<b>E.COLI</b>c project arises from sustainability and conservancy of human health and safety. Therefore while we were constructing the organismic device we also wanted to inform people from all age and we wanted to increase the public awareness on our project; methane gas based (firedamp) explosions and the greenhouse effect of methane gas.</p> | + | <p>Methan<b>E.COLI</b>c projec |
| + | t arises from sustainability and conservancy of human health and safety. Therefore while we were constructing the organismic device we also wanted to inform people from all age and we wanted to increase the public awareness on our project; methane gas based (firedamp) explosions and the greenhouse effect of methane gas.</p> |
| | | |
| <p>Our aim is to inform people in each age. After brainstorming and searching, we planned the content of information and activities according to following subtitles.</p> | | <p>Our aim is to inform people in each age. After brainstorming and searching, we planned the content of information and activities according to following subtitles.</p> |
Line 1,770: |
Line 1,765: |
| <center><p><iframe width="420" height="315" src="http://www.youtube.com/embed/g6RICJsKQAI" frameborder="0" allowfullscreen></iframe></p></center> | | <center><p><iframe width="420" height="315" src="http://www.youtube.com/embed/g6RICJsKQAI" frameborder="0" allowfullscreen></iframe></p></center> |
| | | |
- | <h3>Here is Our Online Lecture, Click the picture to go;</h3> | + | <h3>Here is our Online Lecture, Click the picture to go;</h3> |
| <center><p><a href="http://ocw.metu.edu.tr/course/view.php?id=137" target="_blank" alink="red" vlink="red" ><img src="https://static.igem.org/mediawiki/2011/5/50/Syntheticbiol.png" height="115px" width="632px" alt="Click picture to reach Online Lectures" ></a></center></p> | | <center><p><a href="http://ocw.metu.edu.tr/course/view.php?id=137" target="_blank" alink="red" vlink="red" ><img src="https://static.igem.org/mediawiki/2011/5/50/Syntheticbiol.png" height="115px" width="632px" alt="Click picture to reach Online Lectures" ></a></center></p> |
| | | |
Line 1,783: |
Line 1,778: |
| <img src="https://static.igem.org/mediawiki/2011/f/f8/Partnershipheader.png" height="75px" width="890px"> | | <img src="https://static.igem.org/mediawiki/2011/f/f8/Partnershipheader.png" height="75px" width="890px"> |
| <h2>Collaboration</h2> | | <h2>Collaboration</h2> |
- | <h3>Collaboration with Turk teams in iGEM 2011 </h3><br /> | + | <h3>Collaboration with Turkish teams in iGEM 2011 </h3><br /> |
| <br /> | | <br /> |
- | Since iGEM 2007, there is a team to research and prepare a project for iGEM competition from Middle East Technical University(METU). On behalf, there are advisors and instructors who are familiar with competition and content of it. In this year there are 4 registered teams from Turkey and 3 of them are new participants. Therefore in order to come together and criticize our projects and any deficiencies or ambugity related with project. So we organized and arranged a meeting on Synthetic Biology and iGEM competition which is the first in our country.The participants of this meeting were teams;<b>Fatih Turkey, Bilkent_UNAM, METU-BIN</b> and researchers who related with Synthetic Biology and company owners in Biotechnology field also there was special guests via online talk, Drew Endy, he is an assistant Professor of Bioengineering, Stanford University and Scott Mohr Professor of Biological Chemistry, Boston University This meeting was held in September 10, that was close to Regional Jamboree in order to also check the presentation preparations of teams. The news agencies were also invited and the interviews were done with all teams publicity of teams were enhanced. <br /> | + | Since iGEM 2007, there is a team to research and prepare a project for iGEM competition from Middle East Technical University(METU). On behalf, there are advisors and instructors who are familiar with competition and content of it. In this year there are 4 registered teams from Turkey and 3 of them are new participants. Therefore in order to come together and criticize our projects and any deficiencies or ambugity related with project. So we organized and arranged a meeting on Synthetic Biology and iGEM competition which is the first in our country.The participants of this meeting were teams;<b>Fatih Turkey, Bilkent_UNAM, METU-BIN</b> and researchers who related with Synthetic Biology and company owners in Biotechnology field also there was special guests via online talk, Drew Endy, he is an assistant Professor of Bioengineering, Stanford University and Scott Mohr Professor of Biological Chemistry, Boston University This meeting was held in September 10, that was close to Regional Jamboree in order to also check the presentation preparations of teams. The news agencies were also invited and the interviews were done with all teams publicity of teams were enhanced. <br /> |
| <br /> | | <br /> |
| Except from this, we established a collaboration with <b>METU-BIN Software iGEM 2011</b> team on their software program. This year their project, <a href="http://dayhoff.ii.metu.edu.tr:8080/m4b/" target="_blank">M4B: Mining for BioBricks</a> is on enhancement and simplification of parts registry and gene library usage to ease the wet lab researchers job. They requested us to use and try their software program. One of our parts in this year, kill switch is composite of this year distributions. By the way we tried their program to search and try on this composite. we gave them the following as feedback and also according to our comments on visual of program, we had collaborated this year.<br /> | | Except from this, we established a collaboration with <b>METU-BIN Software iGEM 2011</b> team on their software program. This year their project, <a href="http://dayhoff.ii.metu.edu.tr:8080/m4b/" target="_blank">M4B: Mining for BioBricks</a> is on enhancement and simplification of parts registry and gene library usage to ease the wet lab researchers job. They requested us to use and try their software program. One of our parts in this year, kill switch is composite of this year distributions. By the way we tried their program to search and try on this composite. we gave them the following as feedback and also according to our comments on visual of program, we had collaborated this year.<br /> |
Line 1,795: |
Line 1,790: |
| <br /> | | <br /> |
| <br /> | | <br /> |
- | <h3>Helping to other new Turk teams in the future</h3> <br /> | + | <h3>Helping to other new Turkish teams in the future</h3> <br /> |
| <br /> | | <br /> |
| Our university, METU has an online lecture application; METU OpenCourseware to support the open information source not only members of METU and to reach people to inform in all ages. In this online application, For Synthetic Biology field, last year the sessions were loaded and this year it is upgraded. The protocols for Synthetic biology methods were downloaded and supported with tutorials of procedures that taken during experiments. We established this page and enhanced for Synthetic Biology to reach more students to meet with Synthetic Biology in any region of Turkey. We had requested from President of METU made people to reach this webpage from universities with related departments in an official way. By the way, we believe to reach more students or researchers to iGEM competition and Synthetic Biology. <br /> | | Our university, METU has an online lecture application; METU OpenCourseware to support the open information source not only members of METU and to reach people to inform in all ages. In this online application, For Synthetic Biology field, last year the sessions were loaded and this year it is upgraded. The protocols for Synthetic biology methods were downloaded and supported with tutorials of procedures that taken during experiments. We established this page and enhanced for Synthetic Biology to reach more students to meet with Synthetic Biology in any region of Turkey. We had requested from President of METU made people to reach this webpage from universities with related departments in an official way. By the way, we believe to reach more students or researchers to iGEM competition and Synthetic Biology. <br /> |
Line 1,950: |
Line 1,945: |
| <p>This group consists of high school aged children groups.Through out the workshop, we have paired them in doubles. Firstly, we have explained Synthetic Biolgy and what Synthetic Biology is able to do. After these training, we explained them our project and taught them basic molecular biology procedures and what are the requirements of basic synthetic biology based experiments. We have done the experiments (cloning procedures) together and also they did individually. We also encouraged them to join iGEM High School division.</p> | | <p>This group consists of high school aged children groups.Through out the workshop, we have paired them in doubles. Firstly, we have explained Synthetic Biolgy and what Synthetic Biology is able to do. After these training, we explained them our project and taught them basic molecular biology procedures and what are the requirements of basic synthetic biology based experiments. We have done the experiments (cloning procedures) together and also they did individually. We also encouraged them to join iGEM High School division.</p> |
| | | |
- |
| + | <h3> Official Announcement To All Universities For Introduction Of Synthetic Biology and iGEM Competetion</h3> |
| + | |
| + | <p>For the last human practice approach, we believed that we should inform especially students from other universities about synthetic biology as students in universities are the ones who can improve this field for further generations. For that purpose, we published an official message from our instructor, Prof. Dr. Mahinur Akkaya, with this message, students from other universities –regardless of their department that they’re studying in- will be aware of the field synthetic biology and may not only consider about learning more but also consider about creating an iGEM team for coming years. Here is the original official message and its brief translation for you to read:<br /> |
| + | Dean Office of Arts and Science Department<br /> |
| + | Synthetic biology is a field where natural sciences and engineering sciences go together hand in hand. It is an emerging science that requires the literature search, knowledge of natural sciences and methods of engineering sciences. Synthetic biology is the engineering of organisms to give them desired properties, except their regular metabolic activities. These desired properties are entegrated into genome of the organism with molecular cloning procedures.<br /> |
| + | There are lots of studies going on to introduce this newly emerging science field to people from all age groups and producing an information repository and improving it at the same time. One of this studies is the iGEM (International Genetically Engineered Machines) competition.<br /> |
| + | We, as METU iGEM teams, are attending this competition for four years. For this newly emerging science field to improve more, we believe that it should be spread out to other universities and more and more people should attend this competiton. We are sending you our study about the videos of lab protocols that are mainly used in synthetic biology and references that you can search for more information. We feel honored to tell that these sources are available for everyone who would like to reach them. Links for the sources are as follows:<br /> |
| + | <a href="http://ocw.metu.edu.tr/course/view.php?id=137">http://ocw.metu.edu.tr/course/view.php?id=137</a> <br /> |
| + | <a href="http://www.youtube.com/user/Metuankara">http://www.youtube.com/user/Metuankara</a> |
| + | <br /> |
| + | <br /> |
| + | <p><img width="900px" src="https://static.igem.org/mediawiki/2011/b/bc/Imagetif.png"></p> |
| + | <br /> |
| + | <br /> |
| | | |
| <h3>18-24 year old group</h3> | | <h3>18-24 year old group</h3> |
Line 2,194: |
Line 2,202: |
| <img src="https://static.igem.org/mediawiki/2011/2/28/Wetlabheader.png" height="75px" width="890px"> | | <img src="https://static.igem.org/mediawiki/2011/2/28/Wetlabheader.png" height="75px" width="890px"> |
| <h2>Contact</h2> | | <h2>Contact</h2> |
| + | <strong>Device Experiment Results</strong><br /> |
| + | <br /> |
| + | -<strong>Flask experiments</strong><br /> |
| + | <br /> |
| + | In characterization experiments, we choosed temperature sensitive RNA thermometer (BBa_K115001) and modelled the experiments on GFP measurements. RNA thermometer is a temperature sensitive DNA part that up to 42 C it forms a dimer. This dimer formation prevents polymerase readings that the translation is obstructed. At 42 C the linear form of part forms and translation initiates. This part is submitted to parts registry by iGEM 2008 TUDelft team and the experience of part is represented as none. We modelled the characterization of this part by planing two apart control groups.<br /> |
| + | <br /> |
| + | One pair group for characterization was T7 promoter,RNA thermometer and GFP from upstream to downstream at 37C and the same device at 42C. The aim of this control group was to control any expression of green fluorescence protein at 37 C to check RNA thermometer dimer formation. We prepared a flask experiments and from protein formation to folding range we measured the spectrophotometer and fluoresence spectrometer readings. It is showed the dimer formation of RNA thermometer at lower than 42 C caused inefficient binding of RBS to DNA. That means we measured the GFP readings at two temperatures however at 42 C the expression was observed in higher level. As seen at OD:0.6 reading there is a dramatic difference in expressions.<br /> |
| + | <br /> |
| + | Other pair group for characterization was T7 promoter with GFP at 37 C and T7 promoter,RNA thermometer and GFP from upstream to downstream at 42C. This control group was modelled in order to check and compare the expression levels of two devices. The expected result was to observe the similar readings. Because without RNA thermometer temperature switch off device express similar readings at 37C with RNA thermometer device at 42 C. In the data analysis we observed that there is deviation in readings between control T7 with GFP at 37C and to construct, T7 RNA thermometer and GFP at 42 C.<br /> |
| + | <br /> |
| + | <br /> |
| <center><h3>GFP Reading Data</h3> | | <center><h3>GFP Reading Data</h3> |
| <p><img src="https://static.igem.org/mediawiki/2011/d/db/Datapage.png"></p> | | <p><img src="https://static.igem.org/mediawiki/2011/d/db/Datapage.png"></p> |
| <br /> | | <br /> |
| <br/> | | <br/> |
- | <p><img width="900px" src="https://static.igem.org/mediawiki/2011/3/34/Ans_paper.jpg"></center></p> | + | <p><img width="900px" src="https://static.igem.org/mediawiki/2011/3/34/Ans_paper.jpg"></center></p> |
| + | <br /> |
| + | <br /> |
| + | <p><strong>Assembly Results</strong><br /> |
| + | <br /> |
| + | According our clonning plan, we planned to ligate the coding sequences of methane monooxygenase as subunits and to express the functional monooxygenase enzyme. Since we synthesized the long coding sequence we did PCR experiments with specific primers we extracted the parts in each the gel electrophoresis results gave validation for successfully synthesied DNA fragments, then we digested and ligated each part with related promoters and vector (pSB1C3) again gel electrophoresis data gave us validation to correctly digest and ligated form. <br /> |
| + | <br /> |
| + | <br /> |
| + | <br /> |
| + | <center><p><img src="https://static.igem.org/mediawiki/2011/2/28/1KB-Ladder-X-Lush.png"> |
| + | <br /> |
| + | <br /> |
| + | <br /> |
| + | <img src="https://static.igem.org/mediawiki/2011/e/ec/09%2C16-1kb-control-mmoB-D-Z-C.png"> |
| + | <br /> |
| + | <br /> |
| + | <br /> |
| + | <img src="https://static.igem.org/mediawiki/2011/6/6c/Z-B-c3-c.png"> |
| + | <br /> |
| + | <br /> |
| + | <br /> |
| + | <img src="https://static.igem.org/mediawiki/2011/a/a5/09%2C19-a3-d-lush.png"> |
| + | <br /> |
| + | <br /> |
| + | <br /> |
| + | <img src="https://static.igem.org/mediawiki/2011/e/e4/09%2C18-1k%C4%B1b-D-control-C-Z.png"></p></center> |
| + | <br /> |
| + | <br /> |
| + | <br /> |
| + | |
| + | <br /> |
| + | <br /> |
| + | <strong>-The device parts control experiments</strong></p> |
| + | <p>The synthesized methane monoxygenase construct was so long part that we had problems in synthesizing that we got genes so late. By the way the long sequence was divided into two sequences that one of the regions were splitted into two parts therefore we could not ligated the two parts of coding sequence due to unidentified restriction sites, and full construct unfortunately did not reach to us. The main methane interacting region of monooxygenase could not be expressed functionally. |
| + | We expressed the protein B and C of methane monoxygenase encoeded from mmo B and mmo C genes in protein expression host E.coli BL21 strain. We planned to characterize the proteins in their theoretical molecular weights by SDS-PAGE analysis. However due to technical problems in gel formation we lost samples that we could not reached the data. |
| + | We planned another part on kit plate distributions to check works or not. The bacteriophage 21 lysis casette S, R, and Rz (PVJ4) (BBa_K124003). This part was designed by 2008 iGEM Brown team which induces lysis in E.coli bacteria. We ligated this part with ROSE regulated GFP generator to induce the lysis of bacteria at 42C. Apart from this ligate, we ligated lysis casette with plac promoter and lacZ expressing gene to observe the blue colonies on plates. However we could not observe any blue colony on plates. |
| + | |
| + | </p> |
| + | |
| + | |
| </div> | | </div> |
| </div> | | </div> |