Team:HKUST-Hong Kong/mic.html
From 2011.igem.org
Line 67: | Line 67: | ||
<i>Results:<br></i> | <i>Results:<br></i> | ||
- | The MIC of RR1 was found to lie between 6~9µg/ml.<br><br> | + | The MIC of RR1 was found to lie between <b>6~9µg/ml</b>.<br><br> |
<center> | <center> | ||
<a href=https://static.igem.org/mediawiki/2011/6/66/Ust_MIC_for_non-indole_supplemented_RR1.jpg> | <a href=https://static.igem.org/mediawiki/2011/6/66/Ust_MIC_for_non-indole_supplemented_RR1.jpg> | ||
Line 91: | Line 91: | ||
</p><p> | </p><p> | ||
<i>Results:<br></i> | <i>Results:<br></i> | ||
- | The effect of indole on the MIC for RR1 varied under different concentrations. At 300µM, which was the documented natural concentration of indole maintained by unstressed <i>E. coli</i> [1], we saw a clear increase in MIC as shown by a shift of the curve to the right of the non-indole MIC curve. The rate of decline of OD<sub>600</sub> (an estimation of cell concentration), also indicated that at 300µM, indole is helping RR1 survive better in kanamycin.<br><br> | + | The effect of indole on the MIC for RR1 varied under different concentrations. At 300µM, which was the documented natural concentration of indole maintained by unstressed <i>E. coli</i> [1], we saw a clear increase in MIC as shown by a shift of the curve to the right of the non-indole MIC curve. The rate of decline of OD<sub>600</sub> (an estimation of cell concentration), also indicated that <b>at 300µM, indole is helping RR1 survive better in kanamycin</b>.<br><br> |
- | On the other hand, further increasing the concentration of indole to 1mM did not seem to yield higher MICs. Rather, the results indicated that RR1 performed similarly in 1mM indole and in normal LB, at times even worse. We have several possible explanations for this. First, indole is inherently toxic. It is possible that at 1mM, the toxicity of indole overcame the benefits it provided, and instead began to kill rather than protect cells. Another possibility is that over-promoted expression of passive immunity mechanisms due to higher than natural concentrations of indole over-exhausted cell resources, leading to cell senescence or even death. | + | On the other hand, further increasing the concentration of indole to 1mM did not seem to yield higher MICs. Rather, the results indicated that <b>RR1 performed similarly in 1mM indole and in normal LB, at times even worse.</b> We have several possible explanations for this. First, indole is inherently toxic. It is possible that at 1mM, the toxicity of indole overcame the benefits it provided, and instead began to kill rather than protect cells. Another possibility is that over-promoted expression of passive immunity mechanisms due to higher than natural concentrations of indole over-exhausted cell resources, leading to cell senescence or even death. |
Line 134: | Line 134: | ||
<i>Results:<br></i> | <i>Results:<br></i> | ||
- | Here we can clearly see the effect of indole charity work from our result. Even under 25µg/ml kanamycin, which is half of the recommended working concentration and almost 3 times the MIC of RR1, we are still able to observe significant growth from RR1. In all the concentrations we tested, RR1 remains to compose the majority of the population after overnight culturing. It is particularly interesting to note that even though we were using increasing concentrations of kanamycin, the ratio of RFP to RR1 colonies on our plates remains relatively constant, with RFP occupying around 30-40% of the total population. There did not seem to be a correlation between kanamycin concentration and population ratio when less than 25µg/ml kanamycin was used. | + | Here we can clearly see the effect of indole charity work from our result. Even under 25µg/ml kanamycin, which is half of the recommended working concentration and almost 3 times the MIC of RR1, we are still able to observe significant growth from RR1. In all the concentrations we tested, RR1 remains to compose the majority of the population after overnight culturing. It is particularly interesting to note that even though we were using increasing concentrations of kanamycin, <b>the ratio of RFP to RR1 colonies on our plates remains relatively constant</b>, with RFP occupying around 30-40% of the total population. There did not seem to be a correlation between kanamycin concentration and population ratio when less than 25µg/ml kanamycin was used. |
<br><br> | <br><br> | ||
However, we suspect that if we test the remaining range of 25-50µg/ml, there will be a critical value where RFP out-competes RR1 and subsequently dominates the population, which would indicate the limit of the effect of indole charity. | However, we suspect that if we test the remaining range of 25-50µg/ml, there will be a critical value where RFP out-competes RR1 and subsequently dominates the population, which would indicate the limit of the effect of indole charity. | ||
Line 167: | Line 167: | ||
<i> | <i> | ||
Results:<br></i> | Results:<br></i> | ||
- | While we did not achieve close-to-complete elimination of RR1, the ratio between T4MO and RR1 colonies was clearly different from that of RFP and RR1. Rather than maintaining a fixed ratio, T4MO was seen to gradually out-compete RR1, with a sudden increase seen at the normal MIC limit of RR1 (~10µg/ml). This suggests the weakening of indole charity by T4MO, though not to the extent that it could completely eliminate RR1 at half the recommended working concentration of kanamycin.<br><br> | + | While we did not achieve close-to-complete elimination of RR1, the ratio between T4MO and RR1 colonies was clearly different from that of RFP and RR1. Rather than maintaining a fixed ratio, <b>T4MO was seen to gradually out-compete RR1,</b> with a sudden increase seen at the normal MIC limit of RR1 (~10µg/ml). This suggests the weakening of indole charity by T4MO, though not to the extent that it could completely eliminate RR1 at half the recommended working concentration of kanamycin.<br><br> |
We have two possible explanations for this. First, the plasmid containing T4MO is primarily maintained by kanamycin selection, and thus there will be inevitable plasmid loss as we work below working kanamycin concentrations. This would have impacted the efficiency of T4MO as well as the colony ratio of RR1 to T4MO. Another reason is that it is possible that indole is not the sole extracellular molecule providing passive immunity to antibiotics. While we might have extinguished charity from indole, other signalling molecules might still be protecting RR1. | We have two possible explanations for this. First, the plasmid containing T4MO is primarily maintained by kanamycin selection, and thus there will be inevitable plasmid loss as we work below working kanamycin concentrations. This would have impacted the efficiency of T4MO as well as the colony ratio of RR1 to T4MO. Another reason is that it is possible that indole is not the sole extracellular molecule providing passive immunity to antibiotics. While we might have extinguished charity from indole, other signalling molecules might still be protecting RR1. | ||
Line 191: | Line 191: | ||
</p><p> | </p><p> | ||
- | Here we have also compiled graphs to compare the ratios of RFP/RR1 cultures to that of T4MO/RR1 ones after overnight incubation. It is clear from the data that the selection efficiency for resistant individuals increased markedly, which might indicate that indole charity work is indeed disrupted, favouring the survival of resistant individuals. <a href=#top> [Top]</a><br><br> | + | Here we have also compiled graphs to compare the ratios of RFP/RR1 cultures to that of T4MO/RR1 ones after overnight incubation. It is clear from the data that <b>the selection efficiency for resistant individuals increased markedly,</b> which might indicate that indole charity work is indeed disrupted, favouring the survival of resistant individuals. <a href=#top> [Top]</a><br><br> |
Line 214: | Line 214: | ||
<a name=conclusion></a><b>IV. Conclusion</b></a><br><br> | <a name=conclusion></a><b>IV. Conclusion</b></a><br><br> | ||
- | Our results show preliminary evidence that indole at the right concentration enhances wild type <i>E. coli</i>’s resistance to antibiotics, and that interfering with the indole signalling pathway is indeed a potential method of enhancing the effectiveness of antibiotic selection. <a href=#top> [Top]</a><br><br> | + | Our results show preliminary evidence that indole at the right concentration enhances wild type <i>E. coli</i>’s resistance to antibiotics, and that <b>interfering with the indole signalling pathway is indeed a potential method of enhancing the effectiveness of antibiotic selection.</b> <a href=#top> [Top]</a><br><br> |
<a name=future></a><b>V. Future Plans</b><br><br> | <a name=future></a><b>V. Future Plans</b><br><br> |
Revision as of 19:42, 5 October 2011
I. Introduction Click to enlarge
Phase 2 - Kanamycin MIC test with indole supplement
Results: Click to enlarge
III. Mixed Culture MIC Tests
Click to enlarge
Phase 2 - Wild type (RR1) with kanamycin resistance T4MO (GFP)
Click to enlarge
Here we have also compiled graphs to compare the ratios of RFP/RR1 cultures to that of T4MO/RR1 ones after overnight incubation. It is clear from the data that the selection efficiency for resistant individuals increased markedly, which might indicate that indole charity work is indeed disrupted, favouring the survival of resistant individuals. [Top] Click to enlarge
IV. Conclusion
[1] http://www.nature.com/nature/journal/v467/n7311/abs/nature09354.html |
Culture Tests I. Introduction II. Wild Type (RR1) MIC Test III. Mixed Culture MIC Tests IV. Conclusion V. Future Plans VI. BioBrick construction |
---|---|
|
|
|