Team:Queens Canada/Project/Future
From 2011.igem.org
Line 43: | Line 43: | ||
<regulartext>Additionally, <i>C. elegans</i> could be used as a biosensor, again with the added advantage of motility compared to bacteria, such as <i>E. coli</i>. A graded biosensor can be made by having the worm express a different colour based on the concentration of the molecule. This may serve as a way to see where sewage pipes are leaking and the extent of their leakage. Its use as a biosensor may even have agricultural applications. Programming <i>C. elegans</i> to detect certain beneficial minerals or compounds in farming may serve as a way for farmers to assess the quality of their fields better. If a certain compound is limited or present in excess he/she would be able to detect that using <i>C. elegans </i> and adjust his planting routine accordingly. Because <i>C. elegans</i> is non-pathogenic to humans and does not feed on any agricultural products it would be safe to use in this context (provided it had a proper <span class="classredt"><a href="https://2011.igem.org/Team:Queens_Canada/Side/KillSwitch">kill switch</a><span> to prevent an invasive species outbreak). </regulartext><p> | <regulartext>Additionally, <i>C. elegans</i> could be used as a biosensor, again with the added advantage of motility compared to bacteria, such as <i>E. coli</i>. A graded biosensor can be made by having the worm express a different colour based on the concentration of the molecule. This may serve as a way to see where sewage pipes are leaking and the extent of their leakage. Its use as a biosensor may even have agricultural applications. Programming <i>C. elegans</i> to detect certain beneficial minerals or compounds in farming may serve as a way for farmers to assess the quality of their fields better. If a certain compound is limited or present in excess he/she would be able to detect that using <i>C. elegans </i> and adjust his planting routine accordingly. Because <i>C. elegans</i> is non-pathogenic to humans and does not feed on any agricultural products it would be safe to use in this context (provided it had a proper <span class="classredt"><a href="https://2011.igem.org/Team:Queens_Canada/Side/KillSwitch">kill switch</a><span> to prevent an invasive species outbreak). </regulartext><p> | ||
- | <regulartext>When working with chemotaxis mechanisms in <i> C. elegans</i> it seems the only limiting factor is finding GPCRs that bind to your target ligand. | + | <regulartext>When working with chemotaxis mechanisms in <i> C. elegans</i> it seems the only limiting factor is finding GPCRs that bind to your target ligand. Having the common traits of being eukaryotic and multicellular with a variety of species, grants <i>C. elegans</i> an immense number of sources of potential GPCRs. The capactiy to express human genes coding for GPCRs in <i>C. elegans</i> can allow for future teams to program the worm to respond to stimuli recognized by human GPCRs. This would likely prove to be a worthwhile endeavor. </regulartext> |
</div> | </div> |
Revision as of 04:50, 29 September 2011