Team:Penn State

From 2011.igem.org

(Difference between revisions)
 
(92 intermediate revisions not shown)
Line 1: Line 1:
{{PennStateHeader}}
{{PennStateHeader}}
-
 
<html>
<html>
<head>
<head>
Line 12: Line 11:
letter-spacing: -2px;
letter-spacing: -2px;
font-weight: bold;
font-weight: bold;
 +
        border-bottom: 0px;
 +
   
}
}
h2 {font-family: "Lucida Grande", Tahoma;
h2 {font-family: "Lucida Grande", Tahoma;
-
font-size: 14px;
+
font-size: 16px;
font-weight: lighter;
font-weight: lighter;
font-variant: normal;
font-variant: normal;
Line 20: Line 21:
color: #444;
color: #444;
         margin-top: 10px;
         margin-top: 10px;
-
text-align: center!important;
+
text-align: left;
letter-spacing: 0.3em;
letter-spacing: 0.3em;
 +
        border-bottom: 0px;
}
}
-
h3 {font-family: times, Times New Roman, times-roman, georgia, serif;
+
h3, h4, h5 {font-family: times, Times New Roman, times-roman, georgia, serif;
color: #666;
color: #666;
margin: 0;
margin: 0;
Line 32: Line 34:
letter-spacing: -2px;
letter-spacing: -2px;
font-weight: bold;
font-weight: bold;
 +
        border-bottom: 0px;
}
}
-
p {font-family: times, Times New Roman, times-roman, georgia, serif;
+
p, li, * {font-family: times, Times New Roman, times-roman, georgia, serif;
-
color: #666;
+
color: #333;
-
font-size: 12px;
+
font-size: 14px;
}
}
 +
.bio {width:300px; overflow:hidden; display:inline-block; margin:10px;}
 +
a:link, a:visited, a:hover {font-family: "Lucida Grande", Tahoma;
a:link, a:visited, a:hover {font-family: "Lucida Grande", Tahoma;
font-size: 12px;
font-size: 12px;
Line 46: Line 51:
text-transform: uppercase;
text-transform: uppercase;
         margin-top: 9px;
         margin-top: 9px;
-
text-align: center!important;
+
text-align: left;
letter-spacing: 0.3em;
letter-spacing: 0.3em;
          
          
Line 58: Line 63:
color:#B3591D;}
color:#B3591D;}
-
#scrollnav {position:fixed;
+
#scrollnav {width:190px;
-
             top:260px;
+
position:fixed;
-
             left:170px;}
+
             top:265px;
 +
             left:180px;
 +
float:left;
 +
margin: 0 auto;}
 +
#text {
 +
    float: right;
 +
    width: 715px;
 +
    padding: 0 15px 15px;
 +
}
#topnav {position:relative;
#topnav {position:relative;
-
        left:220px;}
+
left: -20px;}
 +
.container {
 +
    width: 980px;
 +
    margin: 0 auto;
 +
    overflow: hidden;
 +
    position: relative;
 +
}
 +
 
 +
 
</style>
</style>
</head>
</head>
<body style="background-color:white";>
<body style="background-color:white";>
-
 
+
<div class="container">
-
 
+
-
 
+
-
</div>  
+
-
 
+
-
 
+
<div id="scrollnav">
<div id="scrollnav">
<map name="sidenav" id="sidenav">
<map name="sidenav" id="sidenav">
-
<area alt="PSU iGEM 2011 Home" shape="rect" coords="0,0,200,49" href="https://2011.igem.org/Team:Penn_State" />
+
<area alt="Skip to project abstract" shape="rect" coords="0,30,170,59" href="#abstract" />
-
<area alt="Skip to project abstract" shape="rect" coords="0,50,200,99" href="#abstract" />
+
<area alt="Skip to design" shape="rect" coords="0,60,170,89" href="#design" />
-
<area alt="Skip to team descriptions" shape="rect" coords="0,100,200,149" href="#team" />
+
<area alt="Skip to team descriptions" shape="rect" coords="0,90,170,119" href="#team" />
-
<area alt="Skip to brainstorming" shape="rect" coords="0,150,200,199" href="#brainstorm" />
+
<area alt="Skip to brainstorming" shape="rect" coords="0,120,170,149" href="#brainstorm" />
-
<area alt="Skip to research" shape="rect" coords="0,200,200,249" href="#research" />
+
<area alt="Skip to research" shape="rect" coords="0,150,170,179" href="#research" />
-
<area alt="Skip to media" shape="rect" coords="0,250,200,299" href="#media" />
+
<area alt="Skip to media" shape="rect" coords="0,180,170,209" href="https://2011.igem.org/Team:Penn_State/Media" />
-
<area alt="Skip to acknowledgements" shape="rect" coords="0,300,200,350" href="#acknowledgments" />
+
<area alt="Skip to acknowledgements" shape="rect" coords="0,210,170,239" href="#acknowledgments" />
 +
<area alt="PSU iGEM 2011 Home" shape="rect" coords="0,240,170,270" href="https://2011.igem.org/Team:Penn_State" />
</map>
</map>
Line 87: Line 104:
</div>
</div>
 +
<div id="text">
<div id="topnav">
<div id="topnav">
<map name="topnav" id="topnav">
<map name="topnav" id="topnav">
Line 95: Line 113:
<area alt="Results" shape="rect" coords="574,15,715,45" href="https://2011.igem.org/Team:Penn_State/Modelling" />
<area alt="Results" shape="rect" coords="574,15,715,45" href="https://2011.igem.org/Team:Penn_State/Modelling" />
</map>
</map>
-
<img src="https://static.igem.org/mediawiki/2011/7/7c/Homenav.jpg" usemap="#topnav" />
+
<img src="https://static.igem.org/mediawiki/2011/7/7c/Homenav.jpg" width="715px" usemap="#topnav" />
</div>
</div>
-
<a name="abstract"> </a>
 
-
<h1>Project Abstract</h1> <a name="abstract"> </a>
 
-
<p> Ionizing radiation and radiation pollution is an important environmental problem that not only affects those working around radiation facilities, but those dealing with the aftermath of widespread nuclear disasters such as those at the Fukushima Daiichi nuclear reactor. Penn State’s team project designed and constructed a genetic circuit introduced into E. coli bacterial cells, in order to rapidly detect and report the presence of harmful ionizing radiation. We are working to create a robust and reliable biosensor that utilizes the lambda phage lytic-lysogenic switch as the radiation sensor. When the sensor detects radiation, it triggers one of three fast acting reporters we developed based on the concept developed by Imperial College’s 2010 iGEM team will be triggered. Each of the reporters features a different enzyme/substrate reaction (β-galactosodise/β-D-galactose, β-glucurodinase/β-D-glucuronide or C23O/catechol). We believe that the final construct may have the potential to rival current radiation detection methods, such as digital dosimeters. </p>
 
-
<h1>Team</h1><a name="team"></a>
+
<a name="abstract"> . </a>
 +
<h1>Project Abstract</h1>  
 +
<img src="https://static.igem.org/mediawiki/2011/archive/4/4c/20110616225051%21RadioColiTitle.png" height="300px"; align="right">
 +
<p>
 +
Ionizing radiation and radiation pollution is an important environmental problem that affects many. It affects those working around radiation facilities, as well as, those who are exposed to it due to widespread nuclear disasters such as those at the Fukushima Daiichi nuclear reactor or the Chernobyl reactor. Penn State’s team project will focus on using a genetic circuit introduced into E. coli bacterial cells, in order to rapidly detect and report the presence of harmful ionizing radiation. We are working to develop a robust and reliable biosensor which utilizes the lambda phage lytic-lysogenic switch coupled with a fast-acting reporter capable of producing an easily visible effect. We believe that the final construct may have the potential to rival current radiation detection methods, such as digital dosimeters.
 +
</br>
 +
Our hope is that the basis of our biological dosimeter system will prove to be an effective genetic system capable of detecting harmful levels of radiation and relaying it to those working in the field or an affected area. We envision our system to not only be useful in such applications, but also be capable of further expansion and evolution through the expanding field of synthetic biology.
 +
</br>
 +
</p>
 +
</br>
 +
<a name="design"> . </a>
 +
<h1>Design</h1>
 +
<p>
 +
Our project focuses on detecting the degradation and damage of DNA associated with ionizing radiation. The initial proposed design is shown below. It consists of two parts: a sensor based on a lambda phage bistable switch, and a fast-acting reporter similar to the reporter designed by the Imperial College of London 2010 iGEM team. Additionally a modified version of the RecA protein is introduced into the system in order to provide efficient activation of the sensor circuit.
 +
</br>
 +
</br>
 +
Many of the genes for detecting radiation used in this bacterial system have homologous counter-parts in Eukaryotic cells. For instance the RecA protein used in our system is part of a larger family of strand-exchange proteins involved in homologus recombination and DNA repair. Some other examples of this family include the Eukaryotic proteins Rad51 and Dcm1. For this reason it can be thought that a system similar to ours could one-day be used in self-replicating in vivo biosensors for radiation pollution bioremediation purposes and other important applications. 
 +
</p>
 +
<center><img src="https://static.igem.org/mediawiki/2011/5/58/PSURad.png" height="100px" width="100%"></center>
-
<h2>Ben Aloudir</h2>
+
<h3> Click below to view more about each part of our project </h3>
-
<p>Junior </br>
+
<map name="recnav" id="recnav">
-
Biotechnology and Microbiology</p>
+
<area alt="PSU iGEM 2011 Home" shape="rect" coords="0,10,125,38" href="https://2011.igem.org/Team:Penn_State" />
 +
<area alt="Rec A Project" shape="rect" coords="126,10,265,38" href="https://2011.igem.org/RecA_Project" />
 +
<area alt="Sensor Project" shape="rect" coords="266,10,405,38" href="https://2011.igem.org/Sensor_Project" />
 +
<area alt="Reporter Project" shape="rect" coords="406,10,545,38" href="https://2011.igem.org/Reporter_Project" />
 +
</map>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2011/9/9d/Recnav.jpg"  usemap="#recnav" />
 +
</br>
 +
</br>
 +
 
 +
<a name="team"> . </a>
 +
<h1>Team</h1>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2011/e/e9/PSUteam.JPG" height="500px" width="60%" />
 +
</br>
 +
 
 +
<div class="bio">
 +
<h2>Ben Alouidor</h2>
 +
<img src="https://static.igem.org/mediawiki/2011/9/99/Ben_Pic.png" height="300px" />
 +
<p>Benjamin is a current senior majoring in Biotechnology. He heard about iGEM during an immunology course. Currently he loves taking midday naps, and despises anything related to integrals and mathematical series. </p>
 +
</div>
 +
<div class="bio">
<h2>Brian Avison</h2>
<h2>Brian Avison</h2>
-
<p>Junior </br>
+
<img src="https://static.igem.org/mediawiki/2011/3/39/PSUBrian.jpg" height="300px" />
-
Engineering Science </p>
+
<p>Brian is a junior majoring in Engineering Science. He learned about iGEM through his microbiology professor and thought iGEM would be a great opportunity to further his knowledge of genetics, gain valuable research experience, and explore a possible area of interest. He is a brother of Sigma Chi Fraternity; actively involved in THON; and the Blue and White Society. </p>
 +
</div>
 +
<div class="bio">
<h2>Alex Bina</h2>
<h2>Alex Bina</h2>
 +
<img src="https://static.igem.org/mediawiki/2011/1/1d/Profile_pic.jpg" height="300px"/>
     <p>Junior</br>
     <p>Junior</br>
     Bioengineering</p>
     Bioengineering</p>
 +
    <p>Alex wanted to join iGEM because he wanted to design and construct the genetically engineered spider that transformed Peter Parker into Spiderman. When he found out that was impossible, he used every opportunity to sabotage the Penn State iGEM team. No one has heard from Alex since August. Last we heard, he was moonlighting as State College's dark knight.</p></div>
 +
<div class="bio">
<h2>Jamie Colleta</h2>
<h2>Jamie Colleta</h2>
-
     <p>Junior</br>
+
     <img src="https://static.igem.org/mediawiki/2011/9/95/PSUJamie.jpg" height="300px" />
-
     Biological Engineering</p>
+
     <p>Jamie is a junior majoring in Biological Engineering. He joined the iGEM team because of the research and learning opportunity it presented. He has always found the field of genetic engineering uniquely fascinating and loved the freedom and creativity which iGEM offered. Jamie spends his time outside of the lab as an active member of the Agricultural and Biological Engineering Society, the Atlas THON organization, the Italian Student Society, and the Pizza Club</p></div>
 +
<div class="bio">
<h2>Anisha Katyal</h2>
<h2>Anisha Katyal</h2>
-
     <p>Senior</br>
+
     <img src="https://static.igem.org/mediawiki/2011/2/2c/PSUAnisha.jpg" height="300px" />
-
     Biology</p>
+
     <p>Anisha is a senior majoring in biology. She heard about iGEM through a friend and thought it would be a great research experience. When she is not in the lab, she is actively involved in the Biology club.</p>
-
<h2>Elyse Merkel</h2>
+
</div>
-
     <p>Senior</br>
+
<div class="bio"><h2>Elyse Merkel</h2>
-
     Engineeing Science</p>
+
     <img src="https://static.igem.org/mediawiki/2011/6/64/PSUElyse.jpg" height="300px" />
 +
     <p>Elyse is a senior majoring in Engineering Science. She has always had an interest in genetic engineering and iGEM provided her with a unique opportunity to pursue this interest. When not in the lab, Elyse spends her time participating in all things Penn State, including Relay For Life of Penn State, THON committees, and Lion Ambassadors.</p></div>
 +
<div class="bio">
<h2>Byron Pierce</h2>
<h2>Byron Pierce</h2>
 +
    <img src="https://static.igem.org/mediawiki/2011/a/ab/PSUByron.jpg" height="300px">
     <p>Senior</br>
     <p>Senior</br>
-
    Chemical Engineering</p>
+
Chemical Engineering</p>
 +
<p>Byron became interested in genetic engineering when he read the book Jurassic Park by Michael Crichton.  He promptly joined the iGEM team due to a misconception to aid in the effort.  Upon learning that InGen,and not iGEM was responsible for creating the dinosaurs, he became dejected but never the less decided he should help out with the project.  He intends to pursue genetic engineering in grad school with the hopes of one day fulfilling his dream of creating dinosaurs.</p></div>
 +
<div class="bio">
<h2> Jim Rose </h2>
<h2> Jim Rose </h2>
-
     <img src="https://static.igem.org/mediawiki/2011/9/9a/Jim.jpg" height="250px">
+
     <img src="https://static.igem.org/mediawiki/2011/9/9a/Jim.jpg" height="300px" />
-
     <p>Senior</br>
+
     <p>Jim is a senior majoring in biotechnology. He joined the iGEM team because it is "freaking awesome". Jim spends his time outside of iGEM...wait, there's such a thing as time outside iGEM?</p></div>
-
    Biotechnology</p>
+
<div class="bio">
<h2>Lauren Rossi</h2>
<h2>Lauren Rossi</h2>
-
     <p>Senior</br>
+
     <img src="https://static.igem.org/mediawiki/2011/d/d9/PSULauren2.jpg" height="300px" />
-
     Microbiology</p>
+
     <p>Lauren is a senior majoring in Microbiology with a minor in Spanish and Biology and Molecular Biology. She was a participant of the Penn State iGEM team in 2010 and through this experience she developed a interest in synthetic biology. After attending the Jamboree last year, she knew she wanted to participate in iGEM again. When she is not in the lab, Lauren spends her time as a TA for a microbiology lab and is also the Vice President for the American Society for Microbiology.</p></div>
 +
<div class="bio">
<h2>Vishal Saini</h2>
<h2>Vishal Saini</h2>
-
     <p>Senior</br>
+
     <img src="https://static.igem.org/mediawiki/2011/6/6c/PSUVisha.png" height="300px" />
-
     Neuroscience</p>
+
     <p>Vishal is a senior double majoring in Science and Psychology with a minor in Neuroscience. He wanted the chance to get a unique research experience and thought iGEM would offer him this opportunity. Vishal spends his time outside the lab serving as the THON Chair for OPENN State and helping students as undergraduate Chemistry Tutor. He is also a Resident Advisor and an active member of the Global Medical Brigades.</p>
 +
</div>
 +
<div class="bio">
<h2>Kristen Salava</h2>
<h2>Kristen Salava</h2>
-
     <p>Kristen is a junior majoring in bioengineering. Outside of the lab, she spends most of her time with her sorority where she is the Vice President of Standards. She also is an International Envoy within the college of engineering.</p>
+
    <img src="https://static.igem.org/mediawiki/2011/2/29/PSUKristen.jpg" height="300px" />
 +
     <p>Kristen is a junior majoring in bioengineering. She heard about iGEM from one of her bioengineering professors and thought it would be a great way to learn more about what synthetic biology can do. Outside of the lab, she spends most of her time with her sorority where she is the Vice President of Standards. She also is an International Envoy within the college of engineering.</p></div>
 +
<div class="bio">
<h2>Swati Prasad </h2>
<h2>Swati Prasad </h2>
-
<p> SWATI PUT STUFF HERE!!!!!!!!!!!</p>
+
    <img src="http://a7.sphotos.ak.fbcdn.net/hphotos-ak-snc6/33732_1233155236790_1466430277_30981088_6209224_n.jpg" height="300px" />
 +
 
 +
<p> Swati is a senior majoring in Marketing with honors and English with an emphasis in creative writing. She heard about iGEM from the outlaw Jimmy Rose. When she's not in the lab (Who are we kidding, she's never in the lab. She just makes the website prettier!) you can find her hoola-hooping in Wal-mart.</p></div>
 +
 
</br>
</br>
</br>
</br>
Line 152: Line 225:
     Assistant Professor of Agricultural Engineering</p>
     Assistant Professor of Agricultural Engineering</p>
-
<a name="brainstorm"><h1>Brainstorming</h1></a>
+
<a name="brainstorm"> . </a>
-
<p>In the first few days of summer, we began discussing ideas for our project. Some of our first initial thoughts were to modify bacterial photosynthesis using the BCHM gene or to engineer a serotonin sensor. We thought about making a bacterial fuel cell by using Geobacter as a sacrificial anode. We also liked the idea of using bacteria to perform intelligent tasks, like mathematical arithmetic. The last idea we developed was to engineer a bacteria that would be able to detect radiation. The team spent a few days researching these topics to determine how plausible they would be and we finally unanimously agreed upon the bacterial radiation detector. With our full thoughts focused on this topic, we began looking into this idea further and discovered that the Penn State 2007 iGEM team had used the lambda phage system to also develop a bacteria that would test for radiation. However, they were not able to fully assemble their device or test it and we thought that we would be able to build upon their initial foundation.</p>
+
<h1>Brainstorming</h1>  
 +
<p>In the first few days of summer, we began discussing ideas for our project. Some of our first initial thoughts were to modify bacterial photosynthesis using the BCHM gene or to engineer a serotonin sensor. We thought about making a bacterial fuel cell by using Geobacter as a sacrificial anode. We also liked the idea of using bacteria to perform intelligent tasks, like mathematical arithmetic. The last idea we developed was to engineer a bacteria that would be able to detect radiation. The team spent a few days researching these topics to determine how plausible they would be and after a few days of background research unanimously agreed upon the bacterial radiation detector. As we dug deeper into our topic we narrowed our focus. We discovered that the Penn State 2007 iGEM team had used the lambda phage system to also develop a bacteria that would test for radiation and thought this would be a great area to expand. They were not able to fully assemble their device or test it so we came to the conclusion that we could  build upon their initial foundation and develop a great project.</p>
-
 
+
<img src="https://static.igem.org/mediawiki/2011/0/0b/PSUBrainstorm.jpg" height="250px"; float="left">
-
<a name="research"><h1>Research</h1></a>
+
<img src="https://static.igem.org/mediawiki/2011/a/ad/PSUBlackboard.jpg" height="250px"; float="left">
-
<p> Woo hoo! </p>
+
-
 
+
-
 
+
-
<a name="media"><h1>Media</h1></a>
+
-
<iframe width="560" height="315" src="http://www.youtube.com/embed/qv5P-GXiius" frameborder="0" allowfullscreen></iframe></br>
+
</br>
</br>
-
<iframe width="560" height="315" src="http://www.youtube.com/embed/eSsRZWS1itM" frameborder="0" allowfullscreen></iframe>
+
<a name="research"> . </a>
-
 
+
<h1>Research</h1>  
-
<object width="400" height="300"> <param name="flashvars" value="offsite=true&lang=en-us&page_show_url=%2Fphotos%2F67925229%40N07%2Fsets%2F72157627626800649%2Fshow%2F&page_show_back_url=%2Fphotos%2F67925229%40N07%2Fsets%2F72157627626800649%2F&set_id=72157627626800649&jump_to="></param> <param name="movie" value="http://www.flickr.com/apps/slideshow/show.swf?v=107931"></param> <param name="allowFullScreen" value="true"></param><embed type="application/x-shockwave-flash" src="http://www.flickr.com/apps/slideshow/show.swf?v=107931" allowFullScreen="true" flashvars="offsite=true&lang=en-us&page_show_url=%2Fphotos%2F67925229%40N07%2Fsets%2F72157627626800649%2Fshow%2F&page_show_back_url=%2Fphotos%2F67925229%40N07%2Fsets%2F72157627626800649%2F&set_id=72157627626800649&jump_to=" width="400" height="300"></embed></object>
+
<p> After deciding to follow up on the bacterial dosimeter idea for our project, we as a team we had to first do some research on the effects of ionizing radiation in order to better determine what exactly we would be detecting.
</br>
</br>
-
<iframe width="560" height="315" src="http://www.youtube.com/embed/oBWR6wM7ahQ" frameborder="0" allowfullscreen></iframe>
+
</br>
 +
Currently all living organisms are exposed to a relatively low dose of radiation; this amount is so negligible that the negative effects are unnoticeable. The problem with ionizing radiation occurs when one is exposed to a high dose for a short period and/or low doses over an extended period of time. The International Commission on Radiological Protection (ICRP) recommends nuclear industry employees to limit ones yearly exposer to 50 mSv, or 100 mSv over 5 years.<sup>1</sup> One international study, composing 15 countries and encompassing 598,068 nuclear industry workers, found that an increased risk of cancer exists. Specifically, 99% of those tested were exposed to less than 50 mSv of radiation per year, and 1-2% of these cancer related deaths may be attributable to this exposer. It’s also estimated that 100 mSv of cumulative radiation exposer would result to a 5.9% increase chance of mortality. Therefore it is important to be aware of exposure to radiation especially when working in a nuclear facility or when exposed unintentionally.<sup>2</sup>
</br>
</br>
-
<iframe width="560" height="315" src="http://www.youtube.com/embed/DstH4eykOv4" frameborder="0" allowfullscreen></iframe>
+
</br>
 +
</br>
 +
1. Cardis, E. "Risk of Cancer after Low Doses of Ionising Radiation: Retrospective Cohort Study in 15 Countries." Bmj 331.7508 (2005): 77. Print. </br>
 +
2. Shapiro, B. "1990 Recommendations of the International Commission on Radiological Protection." European Journal of Radiology 15.1 (1992): 93. Print.
 +
</p>
-
<a name="acknowledgements"><h1>Acknowledements</h1></a>
+
<a name="acknowledgments"> . </a>
-
  <p> Affymetrix </br>
+
<h1>Acknowledgments</h1>  
 +
  <p> All work and research was performed by members of the Penn State 2011 iGEM Team under the direction of Mike Speer, Tom Richard, and Howard Salis. We would like to thank the following sponsors of our team:</br> </br>
 +
Affymetrix </br>
Life Technologies </br>  
Life Technologies </br>  
Penn State Institutes of Energy and the Environment </br>
Penn State Institutes of Energy and the Environment </br>
Line 181: Line 257:
<a href="http://www.affymetrix.com/estore/"><img src="https://static.igem.org/mediawiki/2011/a/aa/Affymetrix_logo.jpg" height="150px"></a>
<a href="http://www.affymetrix.com/estore/"><img src="https://static.igem.org/mediawiki/2011/a/aa/Affymetrix_logo.jpg" height="150px"></a>
<a href="http://www.lifetechnologies.com/home.html"><img src="https://static.igem.org/mediawiki/2011/0/02/LT_Logo_RGB.jpg" height="150px"></a></br>
<a href="http://www.lifetechnologies.com/home.html"><img src="https://static.igem.org/mediawiki/2011/0/02/LT_Logo_RGB.jpg" height="150px"></a></br>
-
<a href="https://2011.igem.org/Team:Sevilla"><img src="https://static.igem.org/mediawiki/2011/b/b2/Sevilla_logo.jpg" height="150px"></a></br>
+
<a href="http://www.psiee.psu.edu/"><img src="https://static.igem.org/mediawiki/2011/7/7c/PSIEE.jpg" height="150px" width ="600px"></a>
-
<a href="http://www.psiee.psu.edu/"><img src="https://static.igem.org/mediawiki/2011/7/7c/PSIEE.jpg" height="150px" width ="800px"></a>
+
<a href="http://www.huck.psu.edu/"><img src="https://static.igem.org/mediawiki/2011/0/0c/Huck-logo.png" height="100px" width="300px"></a>
<a href="http://www.huck.psu.edu/"><img src="https://static.igem.org/mediawiki/2011/0/0c/Huck-logo.png" height="100px" width="300px"></a>
 +
 +
</br>
 +
</br>
 +
<a href="https://2011.igem.org/Team:Penn_State/sitemap"> <img src="https://static.igem.org/mediawiki/2011/5/51/Sitemap.jpg" width="100%" /> </a>
 +
</div>
</body>
</body>
</html>
</html>
-
 
-
<!--- The Mission, Experiments --->
 
-
 
-
{| style="border-collapse:collapse; color:#FFFFFF;background-color:#000066;" cellpadding="3" cellspacing="2" border="1" bordercolor="#ffffff" width="65%" align="center"
 
-
!align="center"|[[Team:Penn_State|Home]]
 
-
!align="center"|[[Team:Penn_State/Team|<span style="color:#FFFFFF;">Team</span>]]
 
-
!align="center"|[https://igem.org/Team.cgi?year=2011&team_<span style="color:#FFFFFF;">Penn State Official Team Profile</span>]
 
-
!align="center"|[[Team:Penn_State/Project|<span style="color:#FFFFFF;">Project</span>]]
 
-
!align="center"|[[Team:Penn_State/Parts|<span style="color:#FFFFFF;">Parts Submitted to the Registry</span>]]
 
-
!align="center"|[[Team:Penn_State/Modeling|<span style="color:#FFFFFF;">Modeling</span>]]
 
-
!align="center"|[[Team:Penn_State/Notebook|<span style="color:#FFFFFF;">Notebook</span>]]
 
-
!align="center"|[[Team:Penn_State/Safety|<span style="color:#FFFFFF;">Safety</span>]]
 
-
!align="center"|[[Team:Penn_State/Attributions|<span style="color:#FFFFFF;">Attributions</span>]]
 
-
|}
 

Latest revision as of 02:49, 29 September 2011

Skip to project abstract Skip to design Skip to team descriptions Skip to brainstorming Skip to research Skip to media Skip to acknowledgements PSU iGEM 2011 Home
PSU iGEM 2011 Home Wet lab Research Human Practices Results
.

Project Abstract

Ionizing radiation and radiation pollution is an important environmental problem that affects many. It affects those working around radiation facilities, as well as, those who are exposed to it due to widespread nuclear disasters such as those at the Fukushima Daiichi nuclear reactor or the Chernobyl reactor. Penn State’s team project will focus on using a genetic circuit introduced into E. coli bacterial cells, in order to rapidly detect and report the presence of harmful ionizing radiation. We are working to develop a robust and reliable biosensor which utilizes the lambda phage lytic-lysogenic switch coupled with a fast-acting reporter capable of producing an easily visible effect. We believe that the final construct may have the potential to rival current radiation detection methods, such as digital dosimeters.
Our hope is that the basis of our biological dosimeter system will prove to be an effective genetic system capable of detecting harmful levels of radiation and relaying it to those working in the field or an affected area. We envision our system to not only be useful in such applications, but also be capable of further expansion and evolution through the expanding field of synthetic biology.


.

Design

Our project focuses on detecting the degradation and damage of DNA associated with ionizing radiation. The initial proposed design is shown below. It consists of two parts: a sensor based on a lambda phage bistable switch, and a fast-acting reporter similar to the reporter designed by the Imperial College of London 2010 iGEM team. Additionally a modified version of the RecA protein is introduced into the system in order to provide efficient activation of the sensor circuit.

Many of the genes for detecting radiation used in this bacterial system have homologous counter-parts in Eukaryotic cells. For instance the RecA protein used in our system is part of a larger family of strand-exchange proteins involved in homologus recombination and DNA repair. Some other examples of this family include the Eukaryotic proteins Rad51 and Dcm1. For this reason it can be thought that a system similar to ours could one-day be used in self-replicating in vivo biosensors for radiation pollution bioremediation purposes and other important applications.

Click below to view more about each part of our project

PSU iGEM 2011 Home Rec A Project Sensor Project Reporter Project

.

Team


Ben Alouidor

Benjamin is a current senior majoring in Biotechnology. He heard about iGEM during an immunology course. Currently he loves taking midday naps, and despises anything related to integrals and mathematical series.

Brian Avison

Brian is a junior majoring in Engineering Science. He learned about iGEM through his microbiology professor and thought iGEM would be a great opportunity to further his knowledge of genetics, gain valuable research experience, and explore a possible area of interest. He is a brother of Sigma Chi Fraternity; actively involved in THON; and the Blue and White Society.

Alex Bina

Junior
Bioengineering

Alex wanted to join iGEM because he wanted to design and construct the genetically engineered spider that transformed Peter Parker into Spiderman. When he found out that was impossible, he used every opportunity to sabotage the Penn State iGEM team. No one has heard from Alex since August. Last we heard, he was moonlighting as State College's dark knight.

Jamie Colleta

Jamie is a junior majoring in Biological Engineering. He joined the iGEM team because of the research and learning opportunity it presented. He has always found the field of genetic engineering uniquely fascinating and loved the freedom and creativity which iGEM offered. Jamie spends his time outside of the lab as an active member of the Agricultural and Biological Engineering Society, the Atlas THON organization, the Italian Student Society, and the Pizza Club

Anisha Katyal

Anisha is a senior majoring in biology. She heard about iGEM through a friend and thought it would be a great research experience. When she is not in the lab, she is actively involved in the Biology club.

Elyse Merkel

Elyse is a senior majoring in Engineering Science. She has always had an interest in genetic engineering and iGEM provided her with a unique opportunity to pursue this interest. When not in the lab, Elyse spends her time participating in all things Penn State, including Relay For Life of Penn State, THON committees, and Lion Ambassadors.

Byron Pierce

Senior
Chemical Engineering

Byron became interested in genetic engineering when he read the book Jurassic Park by Michael Crichton. He promptly joined the iGEM team due to a misconception to aid in the effort. Upon learning that InGen,and not iGEM was responsible for creating the dinosaurs, he became dejected but never the less decided he should help out with the project. He intends to pursue genetic engineering in grad school with the hopes of one day fulfilling his dream of creating dinosaurs.

Jim Rose

Jim is a senior majoring in biotechnology. He joined the iGEM team because it is "freaking awesome". Jim spends his time outside of iGEM...wait, there's such a thing as time outside iGEM?

Lauren Rossi

Lauren is a senior majoring in Microbiology with a minor in Spanish and Biology and Molecular Biology. She was a participant of the Penn State iGEM team in 2010 and through this experience she developed a interest in synthetic biology. After attending the Jamboree last year, she knew she wanted to participate in iGEM again. When she is not in the lab, Lauren spends her time as a TA for a microbiology lab and is also the Vice President for the American Society for Microbiology.

Vishal Saini

Vishal is a senior double majoring in Science and Psychology with a minor in Neuroscience. He wanted the chance to get a unique research experience and thought iGEM would offer him this opportunity. Vishal spends his time outside the lab serving as the THON Chair for OPENN State and helping students as undergraduate Chemistry Tutor. He is also a Resident Advisor and an active member of the Global Medical Brigades.

Kristen Salava

Kristen is a junior majoring in bioengineering. She heard about iGEM from one of her bioengineering professors and thought it would be a great way to learn more about what synthetic biology can do. Outside of the lab, she spends most of her time with her sorority where she is the Vice President of Standards. She also is an International Envoy within the college of engineering.

Swati Prasad

Swati is a senior majoring in Marketing with honors and English with an emphasis in creative writing. She heard about iGEM from the outlaw Jimmy Rose. When she's not in the lab (Who are we kidding, she's never in the lab. She just makes the website prettier!) you can find her hoola-hooping in Wal-mart.



Mike Speer

Graduate Student

Dr.Tom Richard

Advisor
Professor of Agricultural and Biological Engineering

Dr. Howard Salis

Advisor
Assistant Professor of Agricultural Engineering

.

Brainstorming

In the first few days of summer, we began discussing ideas for our project. Some of our first initial thoughts were to modify bacterial photosynthesis using the BCHM gene or to engineer a serotonin sensor. We thought about making a bacterial fuel cell by using Geobacter as a sacrificial anode. We also liked the idea of using bacteria to perform intelligent tasks, like mathematical arithmetic. The last idea we developed was to engineer a bacteria that would be able to detect radiation. The team spent a few days researching these topics to determine how plausible they would be and after a few days of background research unanimously agreed upon the bacterial radiation detector. As we dug deeper into our topic we narrowed our focus. We discovered that the Penn State 2007 iGEM team had used the lambda phage system to also develop a bacteria that would test for radiation and thought this would be a great area to expand. They were not able to fully assemble their device or test it so we came to the conclusion that we could build upon their initial foundation and develop a great project.


.

Research

After deciding to follow up on the bacterial dosimeter idea for our project, we as a team we had to first do some research on the effects of ionizing radiation in order to better determine what exactly we would be detecting.

Currently all living organisms are exposed to a relatively low dose of radiation; this amount is so negligible that the negative effects are unnoticeable. The problem with ionizing radiation occurs when one is exposed to a high dose for a short period and/or low doses over an extended period of time. The International Commission on Radiological Protection (ICRP) recommends nuclear industry employees to limit ones yearly exposer to 50 mSv, or 100 mSv over 5 years.1 One international study, composing 15 countries and encompassing 598,068 nuclear industry workers, found that an increased risk of cancer exists. Specifically, 99% of those tested were exposed to less than 50 mSv of radiation per year, and 1-2% of these cancer related deaths may be attributable to this exposer. It’s also estimated that 100 mSv of cumulative radiation exposer would result to a 5.9% increase chance of mortality. Therefore it is important to be aware of exposure to radiation especially when working in a nuclear facility or when exposed unintentionally.2


1. Cardis, E. "Risk of Cancer after Low Doses of Ionising Radiation: Retrospective Cohort Study in 15 Countries." Bmj 331.7508 (2005): 77. Print.
2. Shapiro, B. "1990 Recommendations of the International Commission on Radiological Protection." European Journal of Radiology 15.1 (1992): 93. Print.

.

Acknowledgments

All work and research was performed by members of the Penn State 2011 iGEM Team under the direction of Mike Speer, Tom Richard, and Howard Salis. We would like to thank the following sponsors of our team:

Affymetrix
Life Technologies
Penn State Institutes of Energy and the Environment
Huck Institutes of Life Sciences