Team:Queens Canada/Project/Future
From 2011.igem.org
Line 50: | Line 50: | ||
<div id="rightcontenttext"> | <div id="rightcontenttext"> | ||
- | <h3red> Future Applications of Our Research </h3red> | + | <h3red> Future Applications of Our Research </h3red><p> |
<regulartext> At the beginning of the summer we decided to work with <i>C. elegans</i> as our chassis, mostly for the advantages provided by its advanced eukaryotic chemotaxis mechanism. However, as the summer progressed and we learned more about the worm, it proved to be a very shrewd choice. One feature of the worm that we found in working with it was its amazing resilience to harsh environments. Chemotaxis assays done with undiluted naphthalene did not kill or paralyze all of the worms and even allowed for chemotaxis in some! Hardiness of this magnitude was not at all what we were expecting from a 1mm long nematode. We even found the worms able to survive in bitumen straight from tailing ponds for at least a week. Further exploration into the bioremediative potential and capabilities of <i>C. elegans</i> in oil spills is warranted given <i>C. elegans’</i> innate chemotaxis mechanisms towards aromatics, such as those found in bitumen, as well as its resilience to harsh tailing pond conditions.</regulartext> | <regulartext> At the beginning of the summer we decided to work with <i>C. elegans</i> as our chassis, mostly for the advantages provided by its advanced eukaryotic chemotaxis mechanism. However, as the summer progressed and we learned more about the worm, it proved to be a very shrewd choice. One feature of the worm that we found in working with it was its amazing resilience to harsh environments. Chemotaxis assays done with undiluted naphthalene did not kill or paralyze all of the worms and even allowed for chemotaxis in some! Hardiness of this magnitude was not at all what we were expecting from a 1mm long nematode. We even found the worms able to survive in bitumen straight from tailing ponds for at least a week. Further exploration into the bioremediative potential and capabilities of <i>C. elegans</i> in oil spills is warranted given <i>C. elegans’</i> innate chemotaxis mechanisms towards aromatics, such as those found in bitumen, as well as its resilience to harsh tailing pond conditions.</regulartext> | ||
Line 59: | Line 59: | ||
<div id="rightcontenttext"> | <div id="rightcontenttext"> | ||
- | <h3red> What Can Be Designed in the Future </h3red> | + | <h3red> What Can Be Designed in the Future </h3red><p> |
<regulartext> The versatility featured by C.elegans as a chassis opens many doors for future genetic engineering endeavors with the worm. The chemotaxis mechanism of <i>C. elegans</i> makes ideas for future projects virtually limitless. The worm could be engineered to move towards the molecule of interest in any circumstance where the location of a point source is not known exactly or is not concentrated in exactly one area. One particularly far-reaching example of this would be engineering the worm to chemotax towards waterborne pathogens. Although this is an ambitious feat, programming one living organism to pursue another, the effects if successful would be paramount. Proteins on the pathogen’s exterior or even secreted by the pathogen could act as ligands that bind to GPCRs expressed in <i>C. elegans’</i> chemosensory neurons. This would be particularly useful in rural applications because an affected body of water may leach the pathogen into surrounding ground water, affecting local agriculture as well as any neighbouring wells. Extending the idea of toxic products leaching from their original source, this idea could be applied to toxic landfills with C.elegans seeking out harmful chemicals perhaps from batteries or plastics that disturb the surrounding environment. </regulartext> | <regulartext> The versatility featured by C.elegans as a chassis opens many doors for future genetic engineering endeavors with the worm. The chemotaxis mechanism of <i>C. elegans</i> makes ideas for future projects virtually limitless. The worm could be engineered to move towards the molecule of interest in any circumstance where the location of a point source is not known exactly or is not concentrated in exactly one area. One particularly far-reaching example of this would be engineering the worm to chemotax towards waterborne pathogens. Although this is an ambitious feat, programming one living organism to pursue another, the effects if successful would be paramount. Proteins on the pathogen’s exterior or even secreted by the pathogen could act as ligands that bind to GPCRs expressed in <i>C. elegans’</i> chemosensory neurons. This would be particularly useful in rural applications because an affected body of water may leach the pathogen into surrounding ground water, affecting local agriculture as well as any neighbouring wells. Extending the idea of toxic products leaching from their original source, this idea could be applied to toxic landfills with C.elegans seeking out harmful chemicals perhaps from batteries or plastics that disturb the surrounding environment. </regulartext> |
Revision as of 02:04, 29 September 2011