Team:Wisconsin-Madison/syntheticbiology

From 2011.igem.org

(Difference between revisions)
(Created page with "<html> <style> hr { border: none; border-top: 1px #000000 solid; } #globalWrapper { //background: url('http://2011.igem...")
 
(7 intermediate revisions not shown)
Line 157: Line 157:
<a href="https://2011.igem.org/Team:Wisconsin-Madison">Main</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison">Main</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/whatisigem">What is iGEM?</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/whatisigem">What is iGEM?</a>
 +
<a href="https://2011.igem.org/Team:Wisconsin-Madison/ca">Contributions & Attributions</a>
</div>
</div>
</li>
</li>
Line 166: Line 167:
                 <a href="https://2011.igem.org/Team:Wisconsin-Madison/directedevolution">Directed Evolution</a>
                 <a href="https://2011.igem.org/Team:Wisconsin-Madison/directedevolution">Directed Evolution</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/bmc">Microcompartment</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/bmc">Microcompartment</a>
 +
                <a href="https://2011.igem.org/Team:Wisconsin-Madison/parts">Parts</a>
</div>
</div>
</li>
</li>
Line 179: Line 181:
<div id="m4" onmouseover="mcancelclosetime()" onmouseout="mclosetime()">
<div id="m4" onmouseover="mcancelclosetime()" onmouseout="mclosetime()">
<a href="https://2011.igem.org/Team:Wisconsin-Madison/protocols">Protocols</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/protocols">Protocols</a>
-
<a href="https://2011.igem.org/Team:Wisconsin-Madison/calender">Calender</a>
+
<a href="https://2011.igem.org/Team:Wisconsin-Madison/calender">Calendar</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/references">References</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/references">References</a>
</div>
</div>
Line 188: Line 190:
<a href="https://2011.igem.org/Team:Wisconsin-Madison/reuposterSession">REU Poster Session</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/reuposterSession">REU Poster Session</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/socialmedia">Social Media</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/socialmedia">Social Media</a>
-
<a href="https://2011.igem.org/Team:Wisconsin-Madison/presentations">Presentations</a>
 
</div>
</div>
</li>
</li>
<li><a href="https://2011.igem.org/Team:Wisconsin-Madison/safety" onmouseover="mopen('m6')" onmouseout="mclosetime()">Safety</a>
<li><a href="https://2011.igem.org/Team:Wisconsin-Madison/safety" onmouseover="mopen('m6')" onmouseout="mclosetime()">Safety</a>
 +
<div id="m6" onmouseover="mcancelclosetime()" onmouseout="mclosetime()">
 +
<a href="https://2011.igem.org/Team:Wisconsin-Madison/humanpractice">Human Practice</a>
 +
</div>
</li>
</li>
</ul>
</ul>
Line 214: Line 218:
<table border="0" cellspacing="4" cellpadding="0"><tr><td>
<table border="0" cellspacing="4" cellpadding="0"><tr><td>
-
<img src="https://static.igem.org/mediawiki/2011/8/8d/Bmc.png" width = "360" align="right"/>
+
<img src="http://i.imgur.com/CcQmA.jpg" />
 +
<p><br>
<strong><font size="3">
<strong><font size="3">
-
Bacterial Microcompartment
+
Synthetic Biology
</font></strong><p>
</font></strong><p>
-
Bacterial microcompartments (BMC) are tiny protein-assembled compartments which are newly discovered in many bacteria strains. Their existence in cells enables bacteria to compact certain reactions within small defined space such that the enzyme efficiency can be increased due to folded substrate concentration and also those generated mediates from toxic reactions are separated from the rest of cell contains. Pdu microcompartment, which was originally found in Salmonella enteric and Citrobactor freundii, encloses metabolisms that utilize propanediol as a carbon resource. Literatures and former USTC iGEM 2010 team showed that empty microcompartments can be successfully assembled in E. coli and some genes are suggested to be able to direct proteins to outer surface or inner parts of the microcompartments respectively. Based on these findings, we UW-Madison 2011 iGEM team believe that BMC has the potentiality to dramatically improve bacteria production efficiency and can be further remodeled to conduct new functions. And so far, we are trying to assemble pdu microcompartments in E.coli, characterize the assembly rates and make E.coli produce biofuels such as butanol and fatty acids.
+
Previously, we have studied how and why biology works; how a complex collection of dead matter can give rise to life and all its processes. Now that we have begun to understand many of these complicated interactions, we can put them to use with synthetic biology.
 +
Synthetic biology combines the best of both biology and engineering in the design of new biological functions not ordinarily found in nature. This is done by modifying an organism's DNA, similar to how a computer scientist might modify the script for a computer program. This biological "programming" (or "re-programming") isn't done in quite the same way, however.  
 +
Over the past years people have identified discrete blocks of DNA that code for something useful (proteins, enzymes, etc.) and have identified them as genes. By combining these useful chunks of DNA, we can build new sequences that code for something useful to us. Sometimes, we may just want to give an organism a function of another, but we may also build entirely new functions never seen before! With synthetic biology, the sky is the limit!
 +
 
<p><br>
<p><br>
-
Learn more about <a href="https://2011.igem.org/Team:Wisconsin-Madison/biofuels">biofuels</a>.
+
Read more about synthetic biology at the <a href="https://igem.org/Main_Page">official iGEM site</a>.
-
<p>
+
<p><br>
-
<font size="1"><i>Image Source: sddddddddddddddddddddddddddddddddddd</i></font>
+
<font size="1"><i>Image Source: http://www.syntheticgenomics.com/index.html</i></font>

Latest revision as of 23:25, 28 September 2011









Project >> Overview, Ethanol Sensor, Alkane Sensor, Microcompartment


Synthetic Biology

Previously, we have studied how and why biology works; how a complex collection of dead matter can give rise to life and all its processes. Now that we have begun to understand many of these complicated interactions, we can put them to use with synthetic biology. Synthetic biology combines the best of both biology and engineering in the design of new biological functions not ordinarily found in nature. This is done by modifying an organism's DNA, similar to how a computer scientist might modify the script for a computer program. This biological "programming" (or "re-programming") isn't done in quite the same way, however. Over the past years people have identified discrete blocks of DNA that code for something useful (proteins, enzymes, etc.) and have identified them as genes. By combining these useful chunks of DNA, we can build new sequences that code for something useful to us. Sometimes, we may just want to give an organism a function of another, but we may also build entirely new functions never seen before! With synthetic biology, the sky is the limit!


Read more about synthetic biology at the official iGEM site.


Image Source: http://www.syntheticgenomics.com/index.html