Team:XMU-China/Project
From 2011.igem.org
(Difference between revisions)
(→Project Detail) |
|||
Line 28: | Line 28: | ||
i-''ccdB'': intelligent Control of Cell Density in Bacteria | i-''ccdB'': intelligent Control of Cell Density in Bacteria | ||
- | == Project | + | == Project Description == |
We have developed a series of devices which program a bacteria population to maintain at different cell densities. We have designed and characterized the genetic circuit to establish a bacterial ‘population-control’ device in ''E. coli'' based on the well-known quorum-sensing system from ''Vibrio fischeri'', which autonomously regulates the density of an ''E. coli'' population. The cell density however is influenced by the expression levels of a killer gene (''ccdB'') in our device. As such, we have successfully controlled the expression levels of ''ccdB'' by site-directed mutagenesis of a ''luxR'' promoter (''lux pr'') and error-prone PCR of gene ''luxR'', and finally we have built a database for a series of mutation sites corresponding to different cell densities. An artificial neural network has then been built to model and predict the cell density of an ''E. coli'' population. This work can serve as a foundation for future advances involving fermentation industry and information processing. | We have developed a series of devices which program a bacteria population to maintain at different cell densities. We have designed and characterized the genetic circuit to establish a bacterial ‘population-control’ device in ''E. coli'' based on the well-known quorum-sensing system from ''Vibrio fischeri'', which autonomously regulates the density of an ''E. coli'' population. The cell density however is influenced by the expression levels of a killer gene (''ccdB'') in our device. As such, we have successfully controlled the expression levels of ''ccdB'' by site-directed mutagenesis of a ''luxR'' promoter (''lux pr'') and error-prone PCR of gene ''luxR'', and finally we have built a database for a series of mutation sites corresponding to different cell densities. An artificial neural network has then been built to model and predict the cell density of an ''E. coli'' population. This work can serve as a foundation for future advances involving fermentation industry and information processing. | ||
Line 34: | Line 34: | ||
- | + | == Approach == | |
- | + | == Background == | |
== Results == | == Results == |
Revision as of 09:37, 25 September 2011