Team:Wisconsin-Madison/whatisigem

From 2011.igem.org

(Difference between revisions)
Line 166: Line 166:
                 <a href="https://2011.igem.org/Team:Wisconsin-Madison/directedevolution">Directed Evolution</a>
                 <a href="https://2011.igem.org/Team:Wisconsin-Madison/directedevolution">Directed Evolution</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/bmc">Microcompartment</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/bmc">Microcompartment</a>
 +
                <a href="https://2011.igem.org/Team:Wisconsin-Madison/parts">Parts</a>
</div>
</div>
</li>
</li>
Line 188: Line 189:
<a href="https://2011.igem.org/Team:Wisconsin-Madison/reuposterSession">REU Poster Session</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/reuposterSession">REU Poster Session</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/socialmedia">Social Media</a>
<a href="https://2011.igem.org/Team:Wisconsin-Madison/socialmedia">Social Media</a>
-
<a href="https://2011.igem.org/Team:Wisconsin-Madison/presentations">Presentations</a>
 
</div>
</div>
</li>
</li>
Line 200: Line 200:
     <img src="https://static.igem.org/mediawiki/2011/a/aa/Logo_v2.2.jpg"; style="position:absolute; left:-10px; top:-10px"/>
     <img src="https://static.igem.org/mediawiki/2011/a/aa/Logo_v2.2.jpg"; style="position:absolute; left:-10px; top:-10px"/>
</center>
</center>
 +

Revision as of 00:44, 24 September 2011









What is iGEM?
iGEM is a synthetic biology competition and stands for Internationally Genetically Engineered Machines. It began as a friendly competition between 10 MIT teams in 2004, and has since grown to over 130 teams in 2010 from all different countries around the globe. This year even more teams are anticipated, and there will be regional competitions held before the annual international jamboree held at MIT in the fall.

iGEM revolves around two main ideas: the use of BioBricks and the registry. Biobricks are pieces of DNA that have been given a similar structure and that code for something useful. They can be big or small and may contain one or many individual pieces of useful information all packaged into one coherent piece. These biobricks all contain the same interface and thus can be copied and pasted into new DNA with ease.

Each new part, once confirmed, is sent to MIT and physically stored there in the registry. Any other iGEM team can order any Biobrick from the Registry for use in their project, and get physical copies that are easily cultured and can be quickly used, without having to be manufactured by the teams. This open source structure speeds up the research progress significantly and makes great strides in the future of synthetic biology.


Read more about iGEM at the official site here.