Team:Freiburg/Description

From 2011.igem.org

(Difference between revisions)
(Green light receptor)
(Green light receptor)
Line 77: Line 77:
We decided to use light-controlled gene expression, because light is everywhere and always available.<br/>
We decided to use light-controlled gene expression, because light is everywhere and always available.<br/>
The green light receptor is a light-sensing system from the cyanobactrium  ''Synechocystis sp.'' PCC6803.<br/> It consists of three parts interacting with each other in order to start regulated gene expression.<br/> These parts are the following:
The green light receptor is a light-sensing system from the cyanobactrium  ''Synechocystis sp.'' PCC6803.<br/> It consists of three parts interacting with each other in order to start regulated gene expression.<br/> These parts are the following:
-
The main receptor is  CcaS(1), a cyanobacteriochrome, which shows increased autophosphorylation after exposure to green light. The protein CcaS is made up of a N-terminal transmembrane helix, a cyanobactreria specific  GAF domain, two PAS domains and a C-terminal histidine kinase.(Yuu Hirose et al. ( 2008 ))  
+
The main receptor is  CcaS(1), a cyanobacteriochrome, which shows increased autophosphorylation after exposure to green light. The protein CcaS is made up of a N-terminal transmembrane helix, a cyanobactreria specific  GAF domain, two PAS domains and a C-terminal histidine kinase.(Yuu Hirose et al.)  
To be fully functional CcaS has to bind the chromophore Phycocyanobilin (PCB) with its GAF-domain.  
To be fully functional CcaS has to bind the chromophore Phycocyanobilin (PCB) with its GAF-domain.  
The GAF domain in this system has the ligation motif Cys-Leu, instead of the usual plant GAF-domain with Cys-His.
The GAF domain in this system has the ligation motif Cys-Leu, instead of the usual plant GAF-domain with Cys-His.

Revision as of 03:29, 22 September 2011


This is the wiki page
of the Freiburger student
team competing for iGEM 2011.
Thank you for your interest!