Team:Freiburg/Description

From 2011.igem.org

(Difference between revisions)
(Green light receptor)
(Red light receptor)
Line 142: Line 142:
|}
|}
It consists of a transmembrane part called cph8 , its response regulator OmpR and a co-responding promoter region PompC. Like the green light receptor it needs a chromophore like Phycocyanobilin (PCB) to be fully functional.<br/>
It consists of a transmembrane part called cph8 , its response regulator OmpR and a co-responding promoter region PompC. Like the green light receptor it needs a chromophore like Phycocyanobilin (PCB) to be fully functional.<br/>
-
This is how it should work in theory:
 
-
The cph8 is a fusion protein of the phytochrome cph1 from  Synechocystis sp. PCC6803 and the ''E. coli'' histidine kinase EnvZ.  When cph8 is phosphorylated it  passes a phosphoryl group to OmpR which binds to and activates transcription from PompC . (x) . OmpR is the response regulator for osmoregulation and as it is part of an important regulatory pathway in ''E. coli'', you have to use an ''E. coli''-strain deficient  of EnvZ to make your system light dependent.
+
More detailed:
-
To establish this genes you need a part design like the one of  [http://partsregistry.org/Part:BBa_M30109 BBa_M30109] , but like other iGEM teams we had difficulties with this part and decided to assemble it ourselves.
+
Cph8 is a fusion protein of the phytochrome cph1 from  Synechocystis sp. PCC6803 and the ''E. coli'' histidine kinase EnvZ.  When cph8 is phosphorylated it  passes a phosphoryl group to OmpR which binds to and activates transcription of promoter region'' PompC'' . (Tabor, J.) . OmpR is the response regulator for osmoregulation and as it is part of an important regulatory pathway in ''E. coli'', you have to use an ''E. coli''-strain deficient  of EnvZ to make your system light dependent. In the paper we are refering to cph8 is expressed from the promoter P(LTetO-1)in a phosphorylated ground state. Light of 650 nm wavelenght unphosphorylates cph8 and light of 705 nm wavelenght leads to the phosphorylated state again. So the red light receptor produces a positive output in darkness.
 +
In order to have a positive output there  has to be a genetic inverter like a NOT-gate.
 +
The question remains if cph8 would still be expressed with a different promoter in the phosphorylated ground state.
 +
 
 +
To establish a red light receptor you need a part design like the one of  [http://partsregistry.org/Part:BBa_M30109 BBa_M30109] , but like other iGEM teams we had difficulties with this part and decided to assemble it ourselves.
Line 156: Line 159:
References:<br/>
References:<br/>
-
Tabor, J. J., Levskaya, A., & Voigt, C. A. (2011). Multichromatic control of gene expression in Escherichia coli. Journal of Molecular Biology, 405(2), 315-324. Elsevier Ltd. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21035461
+
Tabor, J.J., Levskaya, A., & Voigt, C. A. (2011). Multichromatic control of gene expression in Escherichia coli. Journal of Molecular Biology, 405(2), 315-324.
<br>
<br>

Revision as of 02:26, 22 September 2011


This is the wiki page
of the Freiburger student
team competing for iGEM 2011.
Thank you for your interest!