|
|
(72 intermediate revisions not shown) |
Line 1: |
Line 1: |
| {{main}} | | {{main}} |
| <html> | | <html> |
| + | |
| + | |
| <h2 class="art-postheader">Solution</h2> | | <h2 class="art-postheader">Solution</h2> |
| <div class="cleared"></div> | | <div class="cleared"></div> |
| <div class="art-postcontent"> | | <div class="art-postcontent"> |
- | | + | <p><a name="indice"/> </p> |
| <table id="toc" class="toc"><tr><td><div id="toctitle"><h2>Contents</h2></div> | | <table id="toc" class="toc"><tr><td><div id="toctitle"><h2>Contents</h2></div> |
| <ul> | | <ul> |
Line 16: |
Line 18: |
| <li class="toclevel-1"><a href="#References"><span class="tocnumber">4</span> <span class="toctext">References</span></a></li> | | <li class="toclevel-1"><a href="#References"><span class="tocnumber">4</span> <span class="toctext">References</span></a></li> |
| </td></tr></table> | | </td></tr></table> |
| + | <script>if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); } </script> |
| + | <br> |
| | | |
| <nowiki><div class="art-postcontent"><a name="Circuit"></a><h1><span class="mw-headline"> <b>The circuit</b> </span></h1></div></nowiki> | | <nowiki><div class="art-postcontent"><a name="Circuit"></a><h1><span class="mw-headline"> <b>The circuit</b> </span></h1></div></nowiki> |
| <div style="text-align:justify"> | | <div style="text-align:justify"> |
| | | |
- | <div style='text-align:justify'><div class="thumbinner" style="width: 850px;"><a href="File:Schema_controllo.jpg" class="image"><img alt="" src="https://static.igem.org/mediawiki/2011/e/e2/Schema_controllo.jpg" class="thumbimage" height="65%" width="85%"></a></div></div> | + | <div style='text-align:justify'><div class="thumbinner" style="width: 850px;"><img alt="" src="https://static.igem.org/mediawiki/2011/c/c7/QS_system_synthetic_circuit.png" class="thumbimage" width="85%"></a></div> |
| + | </div> |
| + | <div style='text-align:center; font-size: 12px; font-style:italic; margin-top=50px; padding-top=50px;'>Schematic description of Ctrl+E system behavior</div> |
| <br> | | <br> |
| | | |
- | The goal of the project is to provide a proof of concept for the design and implementation of an ‘<em>in vivo</em> control system’ in <em>E. coli</em>: <b>CTRL-E. </b> This circuit is realized by assembling BioBrick parts with rational criteria, exploiting the information available for the basic modules (experimental data) to support a model-based approach. | + | <p>The goal of the project is to provide a proof of concept for the design and implementation of an ‘<em>in vivo</em> control system’ in <em>E. coli</em>: <b>CTRL+E. </b> This circuit is realized by assembling BioBrick parts with rational criteria, exploiting the information available for the basic modules (experimental data) to support a model-based approach. |
- | The circuit implementing the negative-feedback loop control is designed with the purpose to keep constant over time the concentration of the cellular signalling molecule 3OC6-HSL (involved in <em>V. fischeri</em> quorum sensing system), by regulating the expression of an enzyme that degrades it. <br> | + | The circuit implementing the negative-feedback loop control is designed with the purpose to keep constant over time the concentration of the cellular signalling molecule 3OC6-HSL (involved in <em>V. fischeri</em> quorum sensing system), by regulating the expression of an enzyme that degrades it.</p> |
- | | + | <p> |
- | <b>CTRL-E.</b> is composed by two elements: a LuxI (BBa_C0061, 3OC6-HSL synthetase) expression cassette driven by the aTc-inducible pTet promoter and an AiiA (BBa_C0060, autoinducer lactonase) expression cassette driven by the 3OC6-HSL-inducible pLux promoter.<br> | + | <b>CTRL+E.</b> is composed by two elements: a LuxI (BBa_C0061, 3OC6-HSL synthetase) expression cassette driven by the aTc-inducible pTet promoter and an AiiA (BBa_C0060, autoinducer lactonase) expression cassette driven by the 3OC6-HSL-inducible pLux promoter.</p> |
- | | + | <p> |
- | In <em>E.coli</em> MGZ1 strain, singled out for the case study, pTet promoter is normally repressed, due to the presence of <em>tetR</em> gene integrated in its genome: TetR product is able to inhibit the activity of pTet, thereby the 3OC6-HSL production. This allows the modulation of pTet activity by using tetracycline or anhydrotetracyclin (aTc) as inducers. A variation in the inducer concentration in input permits to modify the set-point of the 3OC6-HSL production in output. | + | In <em>E.coli</em> MGZ1 strain <a href="#Cox">(<i><b>Cox RS 3rd </b> et al. 2007)</i></a>, singled out for the case study, pTet promoter is normally repressed, due to the presence of <em>tetR</em> gene, from Z1 cassette, integrated in its genome <a href="#Lutz">(<i><b>Lutz R</b> et al. 1997</i>)</a>: TetR product is able to inhibit the activity of pTet, thereby the 3OC6-HSL production. This allows the modulation of pTet activity by using tetracycline or anhydrotetracyclin (aTc) as inducers. A variation in the inducer concentration in input permits to modify the set-point of the 3OC6-HSL production in output. |
| When a critical amount of signal molecule is reached into the cells, the complex consisting of 3OC6-HSL and its transcriptional factor LuxR (constitutively expressed by pLambda promoter) is able to activate the pLux promoter, that regulates the expression of AiiA lactonase. | | When a critical amount of signal molecule is reached into the cells, the complex consisting of 3OC6-HSL and its transcriptional factor LuxR (constitutively expressed by pLambda promoter) is able to activate the pLux promoter, that regulates the expression of AiiA lactonase. |
- | So the HSL molecule regulates its own production via a negative feed-back loop system. | + | So the HSL molecule regulates its own production via a negative feed-back loop system.</p> |
- | | + | <div align="right"><small><a href="#indice">^top</a></small></div> |
- | | + | <br> |
- | | + | |
| | | |
| </div> | | </div> |
Line 39: |
Line 44: |
| <a name="Circuit_design"></a><div class="art-postcontent"><h1> <span class="mw-headline"> <b>Circuit design</b> </span></h1></div> | | <a name="Circuit_design"></a><div class="art-postcontent"><h1> <span class="mw-headline"> <b>Circuit design</b> </span></h1></div> |
| <div style='text-align:justify'> | | <div style='text-align:justify'> |
| + | <table align='center' width='100%; margin-top=0px; padding-top=0px;'> |
| + | <tr> |
| + | <td> |
| + | <div style='text-align:center'><div class="thumbinner" style="width:100%;"><img alt="" src="https://static.igem.org/mediawiki/2011/5/5e/Circuito_finale.jpg" class="thumbimage" width="87%"></a></div></div> |
| + | </td> |
| + | </tr> |
| + | </table> |
| + | </div> |
| + | <div style='text-align:center; font-size: 12px; font-style:italic; margin-top=50px; padding-top=50px;'>Schematic description of Ctrl+E system behavior</div> |
| | | |
- | <div style='text-align:justify'><div class="thumbinner" style="width: 800px;"><a href="File:Circuito.jpg" class="image"><img alt="" src="https://static.igem.org/mediawiki/2011/2/2a/Circuito.jpg" class="thumbimage" height="65%" width="87%"></a></div></div> | + | <p>The circuit was built assembling <em>aiiA</em> protein generator and <em>luxI</em> translational unit with <partinfo>BBa_K081022</partinfo> composite part <a href="#Paso">(<i><b>Pasotti L</b> et al. 2011</i>)</a>. Due to the length of the final circuit, the BioBrick parts were selected to reduce the internal homology, that could be cause of recombination or mutation events <a href="#Sleight">(<i><b>Sleight SC</b> et al. 2010</i>)</a> (since the circuit is implemented in a strain expressing <em>recA</em> gene). The <partinfo>BBa_K081022</partinfo> part was purposely selected: in fact, the single terminator <partinfo>BBa_B1006</partinfo> and the double terminator <partinfo>BBa_B0015</partinfo> alignment does not show a significant sequence homology.</p> |
- | <br>
| + | <p> |
- | | + | |
- | The circuit was built assembling <em>aiiA</em> protein generator and <em>luxI</em> translational unit with <partinfo>BBa_K081022</partinfo> composite part. Due to the length of the final circuit, the BioBrick parts were selected to reduce the internal homology, that could be cause of recombination or mutation events (since the circuit is implemented in a strain expressing <em>recA</em> gene). The <partinfo>BBa_K081022</partinfo> part was purposely selected: in fact, the single terminator <partinfo>BBa_B1006</partinfo> and the double terminator <partinfo>BBa_B0015</partinfo> alignment does not show a significant sequence homology. | + | |
- | <br> | + | |
| The circuit was designed without a terminator element downstream the <em>luxI</em> coding sequence. The lack of a terminator doesn't affect the behaviour of our circuit, since a terminator (<partinfo>BBa_B0054</partinfo>) is present in the low copy plasmid <partinfo>pSB4C5</partinfo> used. | | The circuit was designed without a terminator element downstream the <em>luxI</em> coding sequence. The lack of a terminator doesn't affect the behaviour of our circuit, since a terminator (<partinfo>BBa_B0054</partinfo>) is present in the low copy plasmid <partinfo>pSB4C5</partinfo> used. |
- | The <em>aiiA</em> and <em>luxI</em> coding sequences are LVA tagged to decrease the protein half-life. | + | The <em>aiiA</em> and <em>luxI</em> coding sequences are LVA tagged to decrease the protein half-life. <a href="#Andersen">(<i><b>Andersen JB</b> et al. 1998</i>)</a></p> |
- | <br><br> | + | <p> |
- | In order to achieve the desired system output, a fine tuning of the whole circuit is required. A deeper understanding of the transcriptional and translational strength of the regulatory elements (promoter+RBS in several combination) and of the kinetic and the activity of the involved enzymes can be exploited to identify a mathematical model able to predict the behaviour of the controlled system, in order to avoid a cost and time expensive combinatorial approach. | + | In order to achieve the desired system output, a fine tuning of the whole circuit is required. A deeper understanding of the transcriptional and translational strength of the regulatory elements (promoter+RBS in several combination) and of the kinetics and the activity of the involved enzymes can be exploited to identify a mathematical model able to predict the behaviour of the controlled system, in order to avoid a cost and time expensive combinatorial approach.<a href="#Salis">(<i><b>Salis HM</b> et al. 2009</i>)</a></p> |
- | | + | <div align="right"><small><a href="#indice">^top</a></small></div> |
| + | <br> |
| </div> | | </div> |
| | | |
Line 55: |
Line 67: |
| <a name="Functional_module"></a><div class="art-postcontent"><h1><span class="mw-headline"> <b>Functional modules</b> </span></h1></div> | | <a name="Functional_module"></a><div class="art-postcontent"><h1><span class="mw-headline"> <b>Functional modules</b> </span></h1></div> |
| <div style='text-align:justify'> | | <div style='text-align:justify'> |
- | Four basic components of this circuit were identified as crucial to assess the desired circuit behaviour: the promoters <b>pLux</b> and <b>pTet</b> and the enzymes <em><b>luxI</b></em> and <em><b>aiiA</b></em>. <br>For each part, a simple measurement system was designed, built and tested, to gather more information about its functioning.<br> | + | <p>Four basic components of this circuit were identified as crucial to assess the desired circuit behaviour: the promoters <b>pLux</b> and <b>pTet</b> and the enzymes <em><b>luxI</b></em> and <em><b>aiiA</b></em>. <br>For each part, a simple measurement system was designed, built and tested, to gather more information about its functioning.</p> |
- | All modules were tested in <em>E.coli</em> MGZ1 strain. <br> | + | <p>All modules were tested in <em>E.coli</em> MGZ1 strain.</p> |
- | More in detail, the <b>promoters</b> were tested with four different <b>RBSs</b> (RBS<em>X</em> stands for one of these BioBrick parts: <partinfo>BBa_B0030</partinfo>, <partinfo>BBa_B0031</partinfo>, <partinfo>BBa_B0032</partinfo>, <partinfo>BBa_B0034</partinfo>) upstream of an <em>mRFP</em> coding device. The <b>enzymes</b> were assembled under the control of pTet promoter and HSL was measured (using <b>T9002 biosensor</b> – see <a href='https://2011.igem.org/Team:UNIPV-Pavia/Project/Modelling#t9002'>Modelling section</a>) to determine the degradation or synthesis kinetics. | + | <p>More in detail, the <b>promoters</b> were tested with four different <b>RBSs</b> (RBS<em>X</em> stands for one of these BioBrick parts: <partinfo>BBa_B0030</partinfo>, <partinfo>BBa_B0031</partinfo>, <partinfo>BBa_B0032</partinfo>, <partinfo>BBa_B0034</partinfo>) upstream of an <em>mRFP</em> coding device. The <b>enzymes</b> were assembled under the control of pTet promoter and HSL was measured (using <b>T9002 biosensor</b> – see <a href='https://2011.igem.org/Team:UNIPV-Pavia/Project/Modelling#t9002'>Modelling section</a>) to determine the degradation or synthesis kinetics. |
- | | + | </p> |
| + | <div align="right"><small><a href="#indice">^top</a></small></div> |
| + | <br> |
| </div> | | </div> |
| | | |
Line 64: |
Line 78: |
| <div style='text-align:justify'> | | <div style='text-align:justify'> |
| | | |
- | <div align="center"><div class="thumbinner" style="width: 500px;"><a href="File:Ptet.jpg" class="image"><img alt="" src="https://static.igem.org/mediawiki/2011/f/f0/Ptet.jpg" class="thumbimage" height="60%" width="100%"></a></div></div> | + | <table align='center' width='100%'> |
| + | <tr> |
| + | <td> |
| + | <div style='text-align:center'><div class="thumbinner" style="width:100%;"><img alt="" src="https://static.igem.org/mediawiki/2011/9/91/Caratterizzazione_ptetN.jpg" class="thumbimage" width="33%"></a></div></div> |
| + | </td> |
| + | </tr> |
| + | </table> |
| + | <div align="right"><small><a href="#indice">^top</a></small></div> |
| + | <br> |
| | | |
| | | |
Line 71: |
Line 93: |
| <div style='text-align:justify'> | | <div style='text-align:justify'> |
| | | |
| + | <table align='center' width='100%'> |
| + | <tr> |
| + | <td> |
| + | <div style='text-align:center'><div class="thumbinner" style="width:100%;"><img alt="" src="https://static.igem.org/mediawiki/2011/7/79/Caratterizzazione_pluxN.jpg" class="thumbimage" width="60%"></a></div></div> |
| + | </td> |
| + | </tr> |
| + | </table> |
| + | <div align="right"><small><a href="#indice">^top</a></small></div> |
| + | <br> |
| | | |
- | <font color='red'>
| |
- | Image of pLux-RFP (with LuxR!!)
| |
- | </font>
| |
| | | |
| </div> | | </div> |
Line 81: |
Line 109: |
| <div style='text-align:justify'> | | <div style='text-align:justify'> |
| | | |
- | <font color='red'> | + | <table align='center' width='100%'> |
- | Image of pTet-AiiA
| + | <tr> |
- | </font> | + | <td> |
- | <p> | + | <div style='text-align:center'><div class="thumbinner" style="width:100%;"><img alt="" src="https://static.igem.org/mediawiki/2011/8/88/Caratterizzazione_aiia.JPG" class="thumbimage" width="32%"></a></div></div> |
| + | </td> |
| + | </tr> |
| + | </table> |
| + | <p> |
| <em> | | <em> |
| Note: Whilst in the final circuit <em>aiiA</em> expression is regulated by pLux promoter, in the measurement system it is driven by pTet promoter in order to avoid interference between inducer and gene product. | | Note: Whilst in the final circuit <em>aiiA</em> expression is regulated by pLux promoter, in the measurement system it is driven by pTet promoter in order to avoid interference between inducer and gene product. |
Line 90: |
Line 122: |
| </p> | | </p> |
| </div> | | </div> |
| + | <div align="right"><small><a href="#indice">^top</a></small></div> |
| + | <br> |
| | | |
| <nowiki><a name="LuxI"></a><div class="art-postcontent"><h2><span class="mw-headline"> <b>LuxI</b> </span></h2></div></nowiki> | | <nowiki><a name="LuxI"></a><div class="art-postcontent"><h2><span class="mw-headline"> <b>LuxI</b> </span></h2></div></nowiki> |
| <div style='text-align:justify'> | | <div style='text-align:justify'> |
| | | |
- | | + | <table align='center' width='100%'> |
- | <font color='red'> | + | <tr> |
- | Image of pTet-LuxI
| + | <td> |
- | </font> | + | <div style='text-align:center'><div class="thumbinner" style="width:100%;"><img alt="" src="https://static.igem.org/mediawiki/2011/4/48/Caratterizzazione_luxIN.jpg" class="thumbimage" width="28%"></a></div></div> |
| + | </td> |
| + | </tr> |
| + | </table> |
| + | <div align="right"><small><a href="#indice">^top</a></small></div> |
| + | <br> |
| | | |
| </div> | | </div> |
- | <br><br>
| + | <br> |
| <html> | | <html> |
| | | |
Line 108: |
Line 147: |
| <div class="cleared"></div> | | <div class="cleared"></div> |
| <div class="art-postcontent"> | | <div class="art-postcontent"> |
- | </html>
| + | |
| <div style='text-align:justify'> | | <div style='text-align:justify'> |
| <ol type='1'> | | <ol type='1'> |
- | <li>Cox RS 3rd, Surette MG, Elowitz MB (2007) <b> Programming gene expression with combinatorial promoters. </b> <i> Mol. Syst. Biol. </i> 3:145. | + | <li><a name='Cox'></a>Cox RS 3rd, Surette MG, Elowitz MB (2007) <b> Programming gene expression with combinatorial promoters. </b> <i> Mol. Syst. Biol. </i> 3:145. </a> |
- | <br><br> | + | </li><br> |
- | <li>Lutz R, Bujard H (1997) <b> Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. </b> <i>Nucleic Acids Res.</i> 25(6):1203-10. | + | <li><a name='Lutz'></a>Lutz R, Bujard H (1997) <b> Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. </b> <i>Nucleic Acids Res.</i> 25(6):1203-10. |
- | <br><br> | + | </li><br> |
- | <li>Sleight SC, Bartley BA, Lieviant JA et al. (2010) <b>Designing and engineering evolutionary robust genetic circuits. </b> <i>J. Biol. Eng. </i>4:12. | + | <li><a name='Paso'></a>Pasotti L, Quattrocelli M, Galli D et al. (2011) <b>Multiplexing and demultiplexing logic functions for computing signal processing tasks in synthetic biology. </b> <i>Biotechnol. J. </i>6(7):784-95. </li><br> |
- | <br><br> | + | <li><a name='Sleight'></a>Sleight SC, Bartley BA, Lieviant JA et al. (2010) <b>Designing and engineering evolutionary robust genetic circuits. </b> <i>J. Biol. Eng. </i>4:12. |
- | <li>Andersen JB, Sternberg C, Poulsen LK et al. (1998) <b>New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria.</b> <i> Appl. Environ. Microbiol.</i> 64(6):2240-6. | + | </li><br> |
- | <br><br> | + | <li><a name='Andersen'></a>Andersen JB, Sternberg C, Poulsen LK et al. (1998) <b>New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria.</b> <i> Appl. Environ. Microbiol.</i> 64(6):2240-6. |
- | <li>Pasotti L, Quattrocelli M, Galli D et al. (2011) <b>Multiplexing and demultiplexing logic functions for computing signal processing tasks in synthetic biology. </b> <i>Biotechnol. J. </i>6(7):784-95. | + | </li><br> |
| + | <li><a name='Salis'></a>Salis HM, Mirsky EA, Voight CA (2009)<b> Automated design of synthetic ribosome binding sites to control protein expression. </b> <i>Nat. Biotechnol.</i>27:946-950. </li> |
| </ol> | | </ol> |
| </div> | | </div> |
| + | </html> |
| {{end}} | | {{end}} |