Team:UTP-Panama/Safety
From 2011.igem.org
(→References) |
|||
Line 61: | Line 61: | ||
'''AgrColi Project''', while Nitrate Biosensor (PyeaR promoter) was developed, was made by trained students following the UoB Safety Committee guidelines and local rules set out by the laboratories they performed their work, approved and overseen by the iGEM supervisor Dr. Nigel Savery. Regarding Public and Environmental Safety, the E.coli’s encapsulated within the beads die when there are not appropriate conditions; since the gel they are is biodegradable, there is very little potential danger from the substances or bacteria used to either humans or animals. Finally, it has not raised exceptional safety issues in the past and complies with most bioethics regulations.<br> | '''AgrColi Project''', while Nitrate Biosensor (PyeaR promoter) was developed, was made by trained students following the UoB Safety Committee guidelines and local rules set out by the laboratories they performed their work, approved and overseen by the iGEM supervisor Dr. Nigel Savery. Regarding Public and Environmental Safety, the E.coli’s encapsulated within the beads die when there are not appropriate conditions; since the gel they are is biodegradable, there is very little potential danger from the substances or bacteria used to either humans or animals. Finally, it has not raised exceptional safety issues in the past and complies with most bioethics regulations.<br> | ||
- | On the other hand, Georgia Tech part (hybB+OmpA+AOX)the alternative oxidase gene (AOX) was taken from a natural plant which does not represent any threat for environmental, public or research safety, but it would cause some adverse effects when this trait is expressed on wild bacterial colonies, due to the heat | + | On the other hand, in Georgia Tech part (hybB+OmpA+AOX), the alternative oxidase gene (AOX) was taken from a natural plant which does not represent any threat for environmental, public or research safety, but it would cause some adverse effects when this trait is expressed on wild bacterial colonies, due to the heat, energy production and their interesting but not studied improvement of growth under low temperature conditions. Although of this, its components don’t raise any biosafety issues.<br> |
- | In case of LMO liberation on soil, thermogenesis is just temporary because these organisms need another conditions to survive, not only an appropriate temperature, and as the faster they grow, the faster they deplete some of their sources. Anyway, to avoid this situation, mixing these traits in a part and following the standard security we shouldn’t have high risks or “bio- | + | In case of LMO (Living Modified Organisms) liberation on soil, thermogenesis is just temporary because these organisms need another conditions to survive, not only an appropriate temperature, and as the faster they grow, the faster they deplete some of their sources. Anyway, to avoid this situation, mixing these traits in a part and following the standard security we shouldn’t have high risks or “bio-issues". |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
Finally we are planning experiments to meassure the impact of the CspA promoter, in replace of the hybB promoter in the AOX expressión machine, that could lead to a significative improvement of growth and expression capabilities under cold shock situation. This effect should be carefully analyzed due to the possible extension of bacteria survival and action range. This experience will be consultate about how to realize with professional of the National Biosafety Commite (or will not be made) <br> | Finally we are planning experiments to meassure the impact of the CspA promoter, in replace of the hybB promoter in the AOX expressión machine, that could lead to a significative improvement of growth and expression capabilities under cold shock situation. This effect should be carefully analyzed due to the possible extension of bacteria survival and action range. This experience will be consultate about how to realize with professional of the National Biosafety Commite (or will not be made) <br> | ||
Although of this, its components don’t raise other biosafety issues.<br> | Although of this, its components don’t raise other biosafety issues.<br> | ||
Line 97: | Line 94: | ||
'''Biosafety Training''' <br> | '''Biosafety Training''' <br> | ||
We received general instructions on the equipment used in the laboratory, the risks of working in certain areas of it and the precautions we got to have on some materials. | We received general instructions on the equipment used in the laboratory, the risks of working in certain areas of it and the precautions we got to have on some materials. | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
== References == | == References == |
Revision as of 06:50, 4 September 2011
Home |
Biosafety And Biosecurity [http://www.cdc.gov/biosafety/publications/bmbl5/BMBL.pdf]Biosafety and biosecurity are related, but not identical, concepts. Biosafety programs reduce or eliminate exposure of individuals and the environment to potentially hazardous biological agents. Biosafety is achieved by implementing various degrees of laboratory control and containment, through laboratory design and access restrictions, personnel expertise and training, use of containment equipment, and safe methods of managing infectious materials in a laboratory setting. The objective of biosecurity is to prevent loss, theft or misuse of microorganisms, biological materials, and research-related information. This is accomplished by limiting access to facilities, research materials and information. While the objectives are different, biosafety and biosecurity measures are usually complementary. Biosafety and biosecurity programs share common components. Both are based upon risk assessment and management methodology; personnel expertise and responsibility; control and accountability for research materials including microorganisms and culture stocks; access control elements; material transfer documentation; training; emergency planning; and program management. Biosafety and biosecurity program risk assessments are performed to determine the appropriate levels of controls within each program. Biosafety looks at appropriate laboratory procedures and practices necessary to prevent exposures and occupationally-acquired infections, while biosecurity addresses procedures and practices to ensure that biological materials and relevant sensitive information remain secure. Laboratory Practices Followed By Our Team
Safety Issues
Some answers and open debates around these issues
Since our project is based on using the existent BioBricks for engineering devices, we do not have new safety issues in our project for researchers & students.
The reagents used in the lab do not pose a risk if standards microbiological practices are used. In addition, biological parts used to make our BioBrick are not from pathogenic or toxic sources and therefore pose no risk to the safety of team members, laboratory and general public or for environmental quality.
About safety on implicated parts in our Project:AgrColi Project, while Nitrate Biosensor (PyeaR promoter) was developed, was made by trained students following the UoB Safety Committee guidelines and local rules set out by the laboratories they performed their work, approved and overseen by the iGEM supervisor Dr. Nigel Savery. Regarding Public and Environmental Safety, the E.coli’s encapsulated within the beads die when there are not appropriate conditions; since the gel they are is biodegradable, there is very little potential danger from the substances or bacteria used to either humans or animals. Finally, it has not raised exceptional safety issues in the past and complies with most bioethics regulations. On the other hand, in Georgia Tech part (hybB+OmpA+AOX), the alternative oxidase gene (AOX) was taken from a natural plant which does not represent any threat for environmental, public or research safety, but it would cause some adverse effects when this trait is expressed on wild bacterial colonies, due to the heat, energy production and their interesting but not studied improvement of growth under low temperature conditions. Although of this, its components don’t raise any biosafety issues. Finally we are planning experiments to meassure the impact of the CspA promoter, in replace of the hybB promoter in the AOX expressión machine, that could lead to a significative improvement of growth and expression capabilities under cold shock situation. This effect should be carefully analyzed due to the possible extension of bacteria survival and action range. This experience will be consultate about how to realize with professional of the National Biosafety Commite (or will not be made)
Our Institution
Additional Safety IssuesHow we addressed these issues in project design and while conducting laboratory work Biosafety Training References[1] National Institutes of Health 2009 Biosafety in Microbiological and Biomedical Laboratories (BMBL) 5th Edition, U.S. Department of Health and Human Services, Public Health Service Centers for Disease Control and Prevention HHS Publication No. (CDC) 21-1112 [2] Gaceta Oficial, miércoles 14 de agosto de 2002 [3] Autoridad Nacional del Ambiente [4] Portal Nacional del Centro de Intercambio de Información sobre Seguridad de la Biotecnología (BCH) Panamá
Note: At present, we are consulting and working to establish some comittee to debate about this and other issues that raise from Synthetic Biology inside our University and the whole community. |