
PART 2 Simplified DDE Model 
Although ODEs provide a thorough, precise description of the whole system, they contain too many 

equations and parameters which would act as a barrier for simulation and further analysis. A 
simplification of complicated ODEs is necessary. We simplify every single ODE according to certain 
appropriate assumptions. Finally, we came up with a set of DDE equations. 

    Assumptions we have made to deduct the original equations involve: 

 Relatively faster reactions such as transcription reactions and binding reactions will reach to 
Quasi-equilibrium. 

 Basal expression of protein is so meager that they can be ignored in modeling. 
 Two series of Hill Kinetics equations can be estimated through a single Hill Kinetics 

equation. 
 Protein which is translated from mRNA is proportional to corresponding mRNA in a 

previous time. 

Consider gene lasR and luxR which are all constant genes, since AHL has a relatively low 
concentration compared to other substances, we assume that protein concentrations of PlasR and 
PluxR are irrelevant to AHLs. Therefore, concentrations of these proteins will reach to constant 
quantities. Moreover, certain mRNAs will also be constant. That is 
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Then focus on compound LA1 and LA2. The binding process is far quicker than other reactions 
such as translation reactions, thus we assume that the compounds are Quasi-equilibrium: 
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Take the expressions to equation (6) (15), the functions are transformed to:  

dA1
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The transformed functions have nothing to do with feedback factors compared to original ones. 
Knowing that such feedback is essential for our system, we add additional feedback factors 푘 、푘  
manipulatively. 
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Then we want to come up a clear expression of A2 、A1 . They are generated by protein PluxI 
and PlasI, whose translation rate is much slower than the transcription rate. So we assume that certain 
mRNA is Quasi-equilibrium: 

dMLuxI
dt

=
dMlasI
dt

= 0 

We have: 

푀 =
k × [β +（1 − β ） × LA1

K + LA1
]

푑  

푀 =
	k × [β +（1 − β ) × K

K + TetR
]

푑  

By ignoring the basal expression: 
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Knowing that protein PtetR is controlled by LA2 through Hill Function, we assume that 
concentration of mRNA is directly related to LA2: 
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Parameter KM4 is relevant to both KM1 and KM3, however accurate function depicting the 
relationship is unknown. We estimate the quantity of KM4 by multiplying KM1 and KM3. Noting 
LA1 and LA2 have already been expressed, we have: 
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Then we have trouble in expressing protein PluxI and PlasI. Since concentration of protein is the 
integrals of its mRNA, we assume that it is proportional to concentration of mRNA in a previous time. 
Thus we have a DDE function: 
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Equations concerning environmental AHLs remain unchanged. 

The original ODEs can be transformed to a much simple DDEs by above deductions. 
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Parameters 
    Some of the parameters are derived from original ones, some of them are created to describe the 
new equations, and others are set for further testing. 

Parameter Name Value Description Reference 
n1 2 Parameters of hill equation Assumption 
n2 2 Parameters of hill equation Assumption 
K  40nM Parameters of hill equation Assumption 
K  1600nM Parameters of hill equation Estimate 
휌  434 Calculated as constant k

k
∙
퐾 × 푉
푑 × 푑

 

휌  1309 Calculated as constant k
k

퐾 × 푉
푑 × 푑

 

푘  30	nM/min Translation rate, 
connecting with strength of 

RBS(tunable) 

All tunable for test 
Just estimate as 

standard 
푘  30	nM/min Translation rate, 

connecting with strength of 
RBS(tunable) 

γ 2.5min  Diffusion rate of AHL 
through membrane. 

published paper 

n  1 Ratio of cell1 volume to 
cell2 volume 

For testing 

p 0.2 Ratio of cell2 volume to 
total volume 

For testing 

μ 10min  Dilution rate of C12 and 
C6 in environment 

(tunable) 

For testing 

푘  0 Feedback factor For testing 
푘  0 Feedback factor For testing 
휏  30min Time delay For testing 
휏  50min Time delay For testing 
arab 0	nM/min Input to change phase For testing 
푡  0min Beginning time of arab For testing 
푡  0min Ending time of arab For testing 

Table 2 Parameters of DDEs 

 



Results 

1) General result 
    We coded the system in MATLAB. The result shows that every signal AHL is oscillating. 

 

Figure 3 Signal AHL Oscillations 

2) Stability analysis 
   In a nonlinear system, proper value ranges of the parameters are vital for producing a periodic 
oscillating solution. It’s not difficult to find the nonlinear part in our model, thus, we sought to 
analyze the sensitivity of Hill parameters and thoroughly reveal the internal relationship between 

Hill parameters and the system’s robustness. For simplicity, here we denoteK 휌 , 
K

휌 and	푘푇퐿2,푘  by 푘 ,푘 and훽 , 훽  respectively. Without loss of generality, we 
determined to search the affection to the system’s robustness caused by the fluctuation of binary 
parameter	(푘 , 훽 ). After observing distinct oscillation mode (we choose two types of 
concentration of AHLs in environment as our observed object) and its phase trajectory, we 
depicted the bifurcation of our system. 

   Set basic parameters as follows: 

 푘 = 0, 푘� = 0, 휇 = 10min ,훾 = 2.3min , 훽 = 30nm/min, 푘 = 1, 푛 = 푛 = 2, 푝 =
0.2, 푎푟푎푏 = 20, 푡 = 푡 = 0, 휏 = 6, 휏 = 10.  

   We changed the binary parameter (훽 ，푘 ) and got the result below. 



 
Figure 4 C12 and C6 when (휷ퟐ, 풌풎ퟐ) = (ퟑퟎ,ퟎ. ퟏ) 

 
 

Figure 5 C12 and C6 when (휷ퟐ, 풌풎ퟐ) = (ퟏퟐퟎ,ퟎ. ퟏ) 



 

Figure 6 C12 and C6 when (휷ퟐ, 풌풎ퟐ) = (ퟔퟎ,ퟎ. ퟑ) 

After simulating the system at different parameters, we recorded several critical points for 
oscillation and made a table as follows. 

푘  0.05 0.05 0.075 0.075 0.1 0.1 0.125 0.125 0.15 0.15 0.175 0.175 
훽  0.9 900 1.1 575 1.3 170 1.5 145 1.7 105 1.9 84 
푘  0.2 0.2 0.25 0.25 0.3 0.3 0.35 0.35 0.4 0.4 0.5 0.5 
훽  2.1 55 2.6 35 4.2 19 4.8 12 6.9 8 7.6 7.6 

Table 3 Critical points (휷ퟐ, 풌풎ퟐ) for oscillation 

     Depicting those critical points on an axis, we immediately got the bifurcation line of 
parameters   (훽 , 푘 ), which indicates the parameters’ value range when our system can 
oscillate stably, being marked in	‘풃풊풔풕풂풃풍풆’. 



 

Figure 7 Bifurcation Analysis on	(훃ퟐ, 퐤퐦ퟐ) 

3) Proportion of cell volume 
   In actual vivo experiment, volumes of two separate cells might not be the same. We simulate the 
system by changing the proportion of two types of cells. What we know from the simulation is that 
cell proportions only affect the amplitude of signal molecules’ oscillation, but no influence to the 
period or stability of oscillation. The following graphics are drawn under cell proportion 1 and 0.7. 

 

Figure 8 oscillations under different cell proportions 

We can find that under different cell proportions, our system can oscillate at different amplitude, 
and varying in cell proportions may also lead to the change of oscillation period. 



4) Period adjustment 
   As figure 2 indicates, we expected to adjust oscillation period by adding signal molecule aTc into 
our system. A small molecule as aTc is, it can easily bind to protein TetR and quickly depletes TetR 
in cell 2, which results in reduction of TetR net production rate, and indirectly, the protein’s inhibition 
on promoter5 is crippled. Thus, it would take a longer time for our system to reach each threshold, 
which is equivalent to prolonging the time delay 휏  in our simplified model. So we can deduce that 
changing the amount of aTc added into the system in precise model is equivalent to varying the time 
delay 휏  in simplified model. 

  Simulation results under distinct 휏  are presented as follows. 

 

Figure 9 Oscillation cycle’s regulation 

   The result is exactly what we expected, which clearly demonstrates our system can truly be 
controlled by adding in external signal molecules. 

5) Phase adjustment 
   In cell 2’s gene circuit, we designed a promoter induced by arabinose, marked by promoter 6 (see in 
figure 2). Promoter 6 is in a suppressed state until being induced by adding arabinose, and after the 
inhibition is relieved, signal molecule 3O12HSL will be generated extra. We can also analyze the 

differential equations describing , when adding arabinose during period from	푡 	to	푡 ,  
contains an extra item	arab ∙ (t > 푡 ) ∙ (t < 푡 ). The parameter arab can reflect the rate of adding 
arabinose nonlinearly. Here we set arab = 20，푡 = 80，푡 = 120 and simulation result is presented 
as follow. 



 

Figure 10 Oscillation phase’s regulation 

 


