
Model Part: Oscillation stability and sensitivity analyses and Oscillation adjustment 

   Any problem, please contact with: Pei Xie thuxp09@gmail.com 
Or Zhirong Wu browu@126.com 

In our project, we are dedicated to design a quorum-sensing oscillator which consists of two types 
of cells. Cells of the same type can fluctuate synchronously and certain designs were made to adjust 
the phase and the amplitude of oscillation. These are the things that our modeling part aims to 
simulate. We built and simplified our simulation system step by step and deepened into further 
characteristics of the system, which would provide firm evidence proving that our design does work. 
Here we will introduce our modeling work in four parts. 

PART 1 Original Full Model 
At our first step, we wanted to describe the system thoroughly without leaving out any seemingly 

unimportant actions and factors. As a result, the description of the system contains every possible 
mass actions as well as some hill kinetics, Henri-Michaelis-Menten. We came up a set of ODEs with 
19 equations. 

Construction of ODE equation 
CELL I 

 

Figure 1 designed circuit of cell I 

CELL II 

 

Figure 2 designed circuit of cell II 



Model Part: Oscillation stability and sensitivity analyses and Oscillation adjustment 

Promoter 1 and promoter 2 preceding lasR and luxR genes respectively are constant promoters, 
which will transcribe and translate into protein PlasR and PluxR. LA1 is the binding association of 
lasR and 30C12HSL(A2C1) and it can affect the subsequent promoter 2 which can be described by 
Hill Equation. The same goes to LA2. Gene luxI will be translated into protein PluxI which would 
generate 30C6HSL(A1C1) through enzymatic reaction. The AHL will diffuse through the membrane 
to the environment(A1e) and finally enter into Cell 2(A1C2). Protein PtetR which is translated from 
gene tetR represses promoter 5 which is responsible for transcription of gene lasI. Promoter 6 is 
constant for translation of protein PlasI. 30C12HSL(A2C2) is generated from Protein PlasI through 
enzymatic reaction. 30C12HSL in the environment is called A2e which will diffuse to Cell 1. aTc is 
added manipulatively to change the phase of oscillation by binding the protein PTetR. Therefore, we 
have these following ODEs: 

																																																	
dM
dt

= v − d ×M 																																																								(1) 

											
dM
dt

= k × [β +（1 − β ) ×
LA1

K + LA1
]	− d × M 									(2) 

															
dP
dt = k × M − d × P − k1× A1 × P + k2 × LA1																				(3) 

																																																
dP
dt = k × M −d × P 																																																						(4) 

																																																
dLA1
dt = k1 × A1 × P − k2× LA1																																																	(5) 

																										
dA1
dt = −k1× A1 × P + k2 × LA1+ γ ∙ (A1 − A1 )																														(6) 

																																																
dA2
dt = 휆 푃 + γ ∙ (A2 − A2 )																																																							(7) 

																																																				
dM
dt = v − d ×M 																																																				(8) 

dM
dt = k × [β +（1− β ) ×

LA2
K + LA2

] 	− d × M 													(9) 

	
dM
dt = 	k × [β +（1 − β ) ×

K
K + TetR

] 	− 	d × M 																		(10) 

									
dP
dt = k × M −d × P − k3× A2 × P + k4 × LA2																								(11) 

																																																			
dP
dt = k × M −d × P 																																																				(12) 

					
dP
dt = k × M − d × P − k5× P × aTc + k6 × TetR∗																									(13) 
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dLA2
dt = k3 × A2 × P − k4× LA2																																														(14) 

																												
dA2
dt = −	k3 × A2 × P + k4 × LA2+ γ ∙ (A2 − A2 )																										(15) 

																																																		
dTetR∗

dt = k5 × P × aTc − k6 × TetR∗																																										(16) 

																																																					
dA1
dt = 휆 푃 + γ ∙ (A1 − A1 )																																																		(17) 

dA1
dt = −γ

1 − p ∙ (1 + n )
p ∙ n ∙ (A1 − A1 ) − γ ∙

1 − p ∙ (1 + n )
p ∙ (A1 − A1 ) − μA1 	(18) 

dA2
dt = −γ

1 − p ∙ (1 + n )
p ∙ n ∙ (A2 − A2 ) − γ ∙

1 − p ∙ (1 + n )
p ∙ (A2 − A2 ) − μA2 	(19) 

Parameters 
The parameters are inherent factors determining the behaviors, properties of a system. We selected 

the quantities thoughtfully from previous iGEM teams and some others were found from published 
papers.  

Parameter Name Value Description Reference 
n  2 Parameters of hill equation Assumption 
n  2 Parameters of hill equation Assumption 
n  2 Parameters of hill equation Assumption 
K  40nM Parameters of hill equation Assumption 
K  40nM Parameters of hill equation Assumption 
K  40nM Parameters of hill equation Assumption 
k  5.25nM/min Strength decide by R0079  

Peking 2009 
 
 

All tunable for test 
Just estimate as 

standard 

k  5.25nM/min Strength decide by R0062 
k  5.25nM/min Strength decide by R0040 
k  42 Translation rate, 

connecting with strength of 
RBS(tunable) 

k  42 Translation rate, 
connecting with strength of 

RBS(tunable) 
k  42 Translation rate, 

connecting with strength of 
RBS(tunable) 

k  42 Translation rate, 
connecting with strength of 

RBS(tunable) 
k  42 Translation rate, 

connecting with strength of 
RBS(tunable) 

v  5.25nM/min Transcription rate(tunable) Peking 2009 
v  5.25nM/min Transcription rate(tunable) Peking 2009 
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β  0.01 Basal expression in hill 
equation 

Assumption 

β  0.01 Basal expression in hill 
equation 

Assumption 

β  0.01 Basal expression in hill 
equation 

Assumption 

γ 2.5min  Diffusion rate of AHL 
through membrane. 

published paper 

휆  0.06 Generation rate of 
30C6HSL 

published paper 

휆  0.06 Generation rate of 
30C12HSL 

published paper 

d  
 

0.0173min  Degradation constant of 
mRNA 

published paper 

d  0.0173min  Degradation constant of 
mRNA 

published paper 

d  0.0173min  Degradation constant of 
mRNA 

published paper 

d  0.0173min  Degradation constant of 
mRNA 

published paper 

d  2.31 × 10 min  Degradation constant of 
luxR protein. 

2010 MIT 
 

d  1.67 × 10 min  Degradation constant of 
luxI protein. 

2010 MIT 

d  0.01min  Degradation constant of 
lasI protein. 

2010 MIT 

d  1.88 × 10 	min  Degradation constant of 
lasR protein. 

published paper 

d  1.67 × 10 min  Degradation constant of 
tetR protein. 

assumption 

k1 9.6 × 10 nM min  Rate constant of binding 
reaction between LasR and 

30C12HSL 

published paper 

k2 15 min  Rate constant of 
dissociation reaction 
between LasR and 

30C12HSL 

published paper 

k3 0.14232nM min  Rate constant of binding 
reaction between LuxR and 

30C6HSL 

2008 KULeuven 

k4  60min  Rate constant of 
dissociation reaction 
between LuxR and 

30C6HSL 

2008 KULeuven 

k5 0.06nM min  Rate constant of binding 
reaction between tetR and 

aTc 

published paper 

k6 50min  Rate constant of 
dissociation reaction 
between tetR and aTc 

published paper 
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p 0.2 Ratio of cell2 volume to 
total volume 

For test 

n  1 Ratio of cell1 volume to 
cell2 volume 

For test 

μ 10min  Dilution rate of C12 and 
C6 in environment 

(tunable) 

For test 

Table 1 Parameters of ODEs 

Results 
We simulated this system by SIMBIOLOGY, a toolbox embedded in MATLAB. However, 

unaware of the key parameters to which the system is sensitive, we felt difficult to control or adjust 
properly, and the simulation result of the system came into a damped oscillation. We ascribed the 
inability of our model to the fact that the precise descriptions contain too many equations and 
parameters and we felt obliged to establish a simplified model in place of the precise one for 
simulation and further analysis. 

PART 2 Simplified DDE Model 
Although ODEs provide a thorough, precise description of the whole system, they contain too many 

equations and parameters which would act as a barrier for simulation and further analysis. A 
simplification of complicated ODEs is necessary. We simplify every single ODE according to certain 
appropriate assumptions. Finally, we came up with a set of DDE equations. 

     Assumptions we have made to deduct the original equations involve: 

 Relatively faster reactions such as transcription reactions and binding reactions will reach to 
Quasi-equilibrium. 

 Basal expression of protein is so meager that they can be ignored in modeling. 
 Two series of Hill Kinetics equations can be estimated through a single Hill Kinetics 

equation. 
 Protein which is translated from mRNA is proportional to corresponding mRNA in a 

previous time. 

Consider gene lasR and luxR which are all constant genes, since AHL has a relatively low 
concentration compared to other substances, we assume that protein concentrations of PlasR and 
PluxR are irrelevant to AHLs. Therefore, concentrations of these proteins will reach to constant 
quantities. Moreover, certain mRNAs will also be constant. That is 

dM
dt

=
dM
dt

=
dP
dt

=
dP
dt

= 0 

     We have: 

푀 =  、푀 =  

P =
퐾 ×푀

푑 =
퐾 × 푉
푑 × 푑  
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P =
퐾 ×푀

푑 =
퐾 × 푉
푑 × 푑  

Then focus on compound LA1 and LA2. The binding process is far quicker than other reactions 
such as translation reactions, thus we assume that the compounds are Quasi-equilibrium: 

dLA1
dt =

dLA2
dt = 0 

    We have: 

LA1 =
k × 푃

k × 퐴1 = 휌 × 퐴1  

LA2 =
k × 푃

k × 퐴2 = 휌 × 퐴2  

Take the expressions to equation (6) (15), the functions are transformed to:  

dA1
dt = γ(A1 − A1 )、

dA2
dt = γ(A2 − A2 ) 

The transformed functions have nothing to do with feedback factors compared to original ones. 
Knowing that such feedback is essential for our system, we add additional feedback factors 푘 、푘  
manipulatively. 

dA1
dt = −푘 × A1 + γ(A1 −A1 ) 

dA2
dt = −푘 × A2 + γ(A2 −A2 ) 

Then we want to come up a clear expression of A2 、A1 . They are generated by protein PluxI 
and PlasI, whose translation rate is much slower than the transcription rate. So we assume that certain 
mRNA is Quasi-equilibrium: 

dMLuxI
dt =

dMlasI
dt = 0 

We have: 

푀 =
k × [β +（1 − β ） × LA1

K + LA1
]

푑  

푀 =
	k × [β +（1 − β ) × K

K + TetR
]

푑  
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By ignoring the basal expression: 

푀 =
k × LA1

K + LA1
푑  

푀 =
	k × K

K + TetR
푑  

Knowing that protein PtetR is controlled by LA2 through Hill Function, we assume that 
concentration of mRNA is directly related to LA2: 

푀 =
	k × K

K + LA2
푑  

Parameter KM4 is relevant to both KM1 and KM3, however accurate function depicting the 
relationship is unknown. We estimate the quantity of KM4 by multiplying KM1 and KM3. Noting 
LA1 and LA2 have already been expressed, we have: 

푀 =

k × A1C1
(K 휌 ) + A1C1

푑  

푀 =

	k ×
K

휌
K

휌 + A2C2
푑  

Then we have trouble in expressing protein PluxI and PlasI. Since concentration of protein is the 
integrals of its mRNA, we assume that it is proportional to concentration of mRNA in a previous time. 
Thus we have a DDE function: 

푃 = k ×
A1C1

(K 휌 ) + A1C1(t − 휏 )
 

푃 = k ×
K

휌
K

휌 + A2C2(t − 휏 )
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Equations concerning environmental AHLs remain unchanged. 

The original ODEs can be transformed to a much simple DDEs by above deductions. 

																																															
푑A1
푑푡 = −푘 ∙ A1 + γ ∙ (A1 − A1 )																																																						(20) 

											
푑A2
푑푡 = 푘 ∙

A1 (푡 − 휏 )

(K 휌 ) + A1 (푡 − 휏 )
+ γ ∙ (A2 − A2 ) − 푘 ∙ A2 																					(21) 

푑A1
푑푡

= 푘 ∙
K

휌
K

휌 + A2 (t − 휏 )
+ γ ∙ (A1 − A1 ) − 푘 ∙ A1 + arab ∙ (t > 푡 ) ∙ (t < 푡 )	(22) 

																																													
푑A2
푑푡 = −푘 ∙ A2 + γ ∙ (A2 − A2 )																																																									(23) 

푑A1
푑푡 = −μA1 − γ ∙

p ∙ n
1 − p ∙ (1 + n ) ∙ (A1 − A1 ) − γ ∙

p
1 − p ∙ (1 + n ) ∙ (A1 − A1 )					(24) 

푑A2
푑푡 = −μA2 − γ ∙

p ∙ n
1 − p ∙ (1 + n ) ∙ (A2 − A2 ) − γ ∙

p
1 − p ∙ (1 + n ) ∙ (A2 − A2 )					(25) 

Parameters 
  Some of the parameters are derived from original ones, some of them are created to describe the new 
equations, and others are set for further testing. 

Parameter Name Value Description Reference 
n1 2 Parameters of hill equation Assumption 
n2 2 Parameters of hill equation Assumption 
K  40nM Parameters of hill equation Assumption 
K  1600nM Parameters of hill equation Estimate 
휌  434 Calculated as constant k

k ∙
퐾 × 푉
푑 × 푑  

휌  1309 Calculated as constant k
k

퐾 × 푉
푑 × 푑  

푘  30	nM/min Translation rate, 
connecting with strength of 

RBS(tunable) 

All tunable for test 
Just estimate as 

standard 
푘  30	nM/min Translation rate, 

connecting with strength of 
RBS(tunable) 

γ 2.5min  Diffusion rate of AHL 
through membrane. 

published paper 

n  1 Ratio of cell1 volume to 
cell2 volume 

For testing 

p 0.2 Ratio of cell2 volume to 
total volume 

For testing 

μ 10min  Dilution rate of C12 and For testing 
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C6 in environment 
(tunable) 

푘  0 Feedback factor For testing 
푘  0 Feedback factor For testing 
휏  30min Time delay For testing 
휏  50min Time delay For testing 
arab 0	nM/min Input to change phase For testing 
푡  0min Beginning time of arab For testing 
푡  0min Ending time of arab For testing 

Table 2 Parameters of DDEs 

 

Results 

1) General result 
  We coded the system in MATLAB. The result shows that every signal AHL is oscillating. 

 

Figure 3 Signal AHL Oscillations 

2) Stability analysis 
    In a nonlinear system, proper value ranges of the parameters are vital for producing a periodic 
oscillating solution. It’s not difficult to find the nonlinear part in our model, thus, we sought to 
analyze the sensitivity of Hill parameters and thoroughly reveal the internal relationship between 

Hill parameters and the system’s robustness. For simplicity, here we denoteK 휌 , 
K

휌 and	푘푇퐿2,푘  by 푘 ,푘 and훽 , 훽  respectively. Without loss of generality, we 
determined to search the affection to the system’s robustness caused by the fluctuation of binary 
parameter	(푘 , 훽 ). After observing distinct oscillation mode (we choose two types of 
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concentration of AHLs in environment as our observed object) and its phase trajectory, we 
depicted the bifurcation of our system. 

    Set basic parameters as follows: 

 푘 = 0, 푘 = 0, 휇 = 10min ,훾 = 2.3min , 훽 = 30nm/min, 푘 = 1, 푛 = 푛 = 2,푝 =
0.2, 푎푟푎푏 = 20, 푡 = 푡 = 0, 휏 = 6, 휏 = 10.  

    We changed the binary parameter (훽 ，푘 ) and got the result below. 

 
Figure 4 C12 and C6 when (휷ퟐ, 풌풎ퟐ) = (ퟑퟎ,ퟎ. ퟏ) 

 
 

Figure 5 C12 and C6 when (휷ퟐ, 풌풎ퟐ) = (ퟏퟐퟎ,ퟎ. ퟏ) 
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Figure 6 C12 and C6 when (휷ퟐ, 풌풎ퟐ) = (ퟔퟎ,ퟎ. ퟑ) 

After simulating the system at different parameters, we recorded several critical points for 
oscillation and made a table as follows. 

푘  0.05 0.05 0.075 0.075 0.1 0.1 0.125 0.125 0.15 0.15 0.175 0.175 
훽  0.9 900 1.1 575 1.3 170 1.5 145 1.7 105 1.9 84 
푘  0.2 0.2 0.25 0.25 0.3 0.3 0.35 0.35 0.4 0.4 0.5 0.5 
훽  2.1 55 2.6 35 4.2 19 4.8 12 6.9 8 7.6 7.6 

Table 3 Critical points (휷ퟐ, 풌풎ퟐ) for oscillation 

      Depicting those critical points on an axis, we immediately got the bifurcation line of 
parameters   (훽 , 푘 ), which indicates the parameters’ value range when our system can 
oscillate stably, being marked in	‘풃풊풔풕풂풃풍풆’. 
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Figure 7 Bifurcation Analysis on	(훃ퟐ, 퐤퐦ퟐ) 

3) Proportion of cell volume 
    In actual vivo experiment, volumes of two separate cells might not be the same. We simulate the 
system by changing the proportion of two types of cells. What we know from the simulation is that 
cell proportions only affect the amplitude of signal molecules’ oscillation, but no influence to the 
period or stability of oscillation. The following graphics are drawn under cell proportion 1 and 0.7. 

 

Figure 8 oscillations under different cell proportions 

We can find that under different cell proportions, our system can oscillate at different amplitude, 
and varying in cell proportions may also lead to the change of oscillation period. 
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4) Period adjustment 
    As figure 2 indicates, we expected to adjust oscillation period by adding signal molecule aTc into 
our system. A small molecule as aTc is, it can easily bind to protein TetR and quickly depletes TetR 
in cell 2, which results in reduction of TetR net production rate, and indirectly, the protein’s inhibition 
on promoter5 is crippled. Thus, it would take a longer time for our system to reach each threshold, 
which is equivalent to prolonging the time delay 휏  in our simplified model. So we can deduce that 
changing the amount of aTc added into the system in precise model is equivalent to varying the time 
delay 휏  in simplified model. 

    Simulation results under distinct 휏  are presented as follows. 

 

Figure 9 Oscillation cycle’s regulation 

    The result is exactly what we expected, which clearly demonstrates our system can truly be 
controlled by adding in external signal molecules. 

5) Phase adjustment 
    In cell 2’s gene circuit, we designed a promoter induced by arabinose, marked by promoter 6 (see in 
figure 2). Promoter 6 is in a suppressed state until being induced by adding arabinose, and after the 
inhibition is relieved, signal molecule 3O12HSL will be generated extra. We can also analyze the 

differential equations describing , when adding arabinose during period from	푡 	to	푡 ,  
contains an extra item	arab ∙ (t > 푡 ) ∙ (t < 푡 ). The parameter arab can reflect the rate of adding 
arabinose nonlinearly. Here we set arab = 20，푡 = 80，푡 = 120 and simulation result is presented 
as follow. 
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Figure 10 Oscillation phase’s regulation 

PART 3 Dimensionless Model 
  In order to make a further analysis on stability of the system, sensitivity of parameters, feedback 

factors-we manipulate all the arguments and parameters to make them dimensionless. Analysis of this 
part is crucial since parameters in vivo experiment may be different and even at odds with modeling 
ones but a proper dimensionless can reveal the mathematical essence of our model. 

    Considering the Hill equation in the simplification DDEs, A1  and K 휌⁄  should be the same 
order of magnitude, thus K 휌⁄  is a well measurement of quantities of	A1 . We have: 

	[A1 ]~	K 휌⁄  

   Similarly, 

[A2 ]~	K 휌⁄  

   In equation (20) (23), Let: 

푑A1 푑푡 = 0⁄ , 푑A2 푑푡⁄ = 0 

   We have: 

[A1 ]~
(푘 + γ) ∙ K

γ ∙ 휌 ，	[A2 ]~
(푘 + γ) ∙ K

γ ∙ 휌  

   In equation (24) (25), Let: 

푑A1 푑푡 = 0⁄ , 푑A2 푑푡⁄ = 0 

   We have: 
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[A1 ]~
K
휌 ∙ (1 +

휇
훾 ∙

1 − p ∙ (1 + n )
p ) 

[A2 ]~
K
휌 ∙ (1 +

휇
훾 ∙

1 − p ∙ (1 + n )
p ∙ n ) 

   Define: 

푥 =
A1
K

휌
, 푥 =

A1
K

휌
∙

1

1 + 휇훾 ∙
1 − p(1 + n )

p

, 

		푦 =
A2
K

휌
∙

1

1 + 휇
훾 ∙
1 − p(1 + n )

p ∙ n

, 푦 =
A2

K 휌⁄ ,		 

푥 =
A1

K 휌⁄ ∙
푘 + γ
γ , 푦 =

A2
K 휌⁄ ∙

푘 + γ
γ , 푡∗ = 훾 ∙ 푡 

   Define:  

푎 =
푘
훾
, 푏 =

푘
훾
, u =

휇
훾
, v =

푝
1 − 푝(1 + n )

, m =
휌
K

∙
푘
푟
, n =

휌
K

∙
푘
푟

 

   The dimensionless equations are as follows:  

																																																								
푑푥
푑푡∗

= −(푎 + 1) ∙ 푥 + (1 + 푎) ∙ 푥 																																															(26) 

																																																								
푑푦
푑푡∗

= −(푏 + 1) ∙ 푦 + (1 + 푏) ∙ 푦 																																																(27) 

																	
푑푥
푑푡∗

= 푚
1

1 + 푢 v⁄
∙

1
1 + 푦 (푡∗ − 휏 ∗) +

1
1+ 푢 v⁄

∙
1

푎 + 1
푥 − (푎 + 1)푥 																	(28) 

													
푑푦
푑푡∗ = 푛

1
1 + 푢 vn⁄ ∙

푥 (푡∗ − 휏 ∗)
1 + 푥 (푡∗ − 휏 ∗) +

1
1 + 푢 vn⁄ ∙

1
푏 + 1푦 − (푏 + 1)푦 											(29) 

													
푑푥
푑푡∗ = −(푢 + (1 + n ) ∙ 푣) ∙ 푥 + (1 + 푎) ∙ 푣n ∙ 푥 + (1 + 푎) ∙ 푣 ∙ 1 +

u
v 푥 										(30) 

											
푑푦
푑푡∗ = −(푢 + (1 + n ) ∙ 푣) ∙ 푦 + (1 + 푏) ∙ 푣 ∙ 푦 + (1 + 푏) ∙ 푣n ∙ 1 +

u
vn 푦 							(31) 

Parameters 
Parameter Name Value Reference 

푎 0 For testing 
푏 0 For testing 
휏 ∗ 25 For testing 
휏 ∗ 70 For testing 
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u 4 휇
훾

 

v 0.33 푝
1 − 푝(1 + n ) 

m 52.08 휌
K ∙

푘
푟  

n 39.28 휌
K ∙

푘
푟  

n  1 For testing 
n  2 Hill constant 
n  2 Hill constant 

Table 4 parameters of dimensionless DDEs 

Results 

1) Sensitivity analysis 
    In order to find out the key parameters which will affect stability of the system at most, we need to 
make a sensitivity analysis on each. At first, we did brief and instinctive analyses on each parameter as 
follows. 휏 ∗	And 휏 ∗ represent time delay in cell 1 and cell 2 respectively, which have been 
discussed in part 2, have little influence on stability of system but intend to affect the oscillation 
period merely. Parameters 푎  and 푏  refer to feedback factors indirectly, which have not been 
discussed before, we will see how 푎  and 푏  affect our system later. We have clarified that 
parameter 	u  is equivalent to 	μ 훾⁄ , thus, u  is directly decided by the dilution rate of signal 
molecules 3OC12HSL and 3OC6HSL in environment and will inevitably influence stability of 
oscillation. As for m	 and 	n , they are inseparably connected to the Hill parameters whose 
sensitivity have been analyzed in part 2, so we can deduce that m  and 	n  are both sensitive 
parameters to our system. 

    Here we mainly did sensitivity analyses on parameters 	m , n	and 	u . Parameters were set 
fundamentally as Table 4 shows. 

    Simulation results reveal that the system can oscillate stably only when u < 5.3(fixed the other 
two sensitive parameters),  11.9 < m < 71.3 and	n > 34.4. In other words, to ensure the stability 
of oscillation, the dilution rate cannot be too high, while the promoter 2 and 4 which affect m and 
n should be chosen appropriately. 
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Figure 11 Sensitivity analyses results (On u) 

 

Figure 12 Sensitivity analyses results (On m) 
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Figure 13 Sensitivity analyses results (On n) 

2) Stability analysis 
   Although we have done sensitivity analyses on some predominant parameters and acquired fabulous 
results, these analyses were all based on unary composites, holding only a single subject. We are not 
content with only doing sensitivity analyses, which merely care about single-in-single-out outcomes 
but not considering binary relation in systematic concept. So we made a bifurcation analysis on binary 
parameter	(u,m) adopting the same method as what we have done in part 2. 

u 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6 7 7.8 
m 0.03 0.5 1.2 2.1 3.1 4.3 5.6 7.1 8.6 10.2 11.8 14.3 32.1 34.3 
u 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6 7 7.8 
m 1500 800 370 280 190 150 130 117 101 87 74 54 37.2 34.3 

Table 3 critical points (퐮,퐦) for oscillation 

   Depicting those points into an axis, we got the bifurcation line, which indicates the parameters’ 
value range when our system can oscillate stably is in the area marked by	‘푏푖푠푡푎푏푙푒’ as follows. 
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Figure 14 Bifurcation analysis on (퐮,퐦) 

3) Feedback analysis 
    By changing parameters 푎 and	푏, which is equivalent to varying types of feedback introduced, we 
got simulation results as follows (In order to manifest more clearly, the parameter v was set larger, 
thus each cell’s feedback effect would put greater influence on the whole system). 

 
Figure 15 System with feedback 
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    The analysis shows that only with a negative feedback mechanism could the overall system be 
working as an oscillator. When a=b=0, the system contains no artificial negative feedback, but there 
may be some inherent negative feedback within the system. 

PART 4 Quorum-sensing Effect 
   What we have done insofar is focused on two-cell oscillation. Quorum-sensing oscillator is not 
simply a matter of expansion in magnitude, but a matter of robustness in allowing difference of each 
individual cell. Moreover, we test the adjustment of phase and amplitude of oscillation in this part. 

   As we all know, no two things in this world are the same, so do cells. The major difference of 
individual cell that we take into considerations is twofold: 

 Each cell is distinct at generating AHL. 
 The initial amount of AHL can be disproportionally distributed in each cell. 

   The rate of generation of AHL is closely related to parameter m and	n. Therefore, we introduce 
randomness to both parameters by letting them obey normal distribution. That is:  

m(i) = μ1+ N(0,휎1 ); 
n(i) =	μ2+ N(0,휎2 ); 

    μ1	and	μ2 are the average ability of generating 30C6HSL and 3012CHSL, and normal distribution-- 
N(0, 휎 )--describes the fluctuations of AHLs in every individual cell. We then expanded our equations 
from 2 cells to a population of cells. Each cell share a mutual environment in which we assume that 
AHLs in environment is proportionally distributed.  

 

Figure 16 100 Cells Varied in parameter m and n 
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    The figures indicate that our system can oscillate synchronically being able to tolerate differences 
among a population of cells. Furthermore, the figures prove that different ability of generating AHLs 
of cells have nothing to do with the period and phase of the oscillation. We can also see that the 
oscillation amplitude of each cell is to a greater extent varied when the Variance of interruption is 
enlarged. 

    Moreover, we test whether the oscillation is dependent on initial distribution of AHL by changing 
the initial amount drastically by letting them follow uniform distribution. That is: 

Initial(i) = U(0,20); 

    The results would give evidence to prove that our system can start to oscillate synchronically given 
variant initial starting numbers. 

    Based on this distribution restraining the initial AHL concentration in each cell, we simulated 
out a figure as follows. 

 

Figure 17 100 Cells Varied in initial AHL concentration 

   The results demonstratively give evidence proving that our system can start to oscillate 
synchronically given variant initial starting numbers. 

 

Reference 
Uri Alon, (2007). Network motifs: theory and experimental approaches. Nature. 



Model Part: Oscillation stability and sensitivity analyses and Oscillation adjustment 

Chunbo Lou, Xili Liu, Ming Ni, et al. (2010). Synthesizing a novel genetic sequential logic 
circuit: a push-on push-off switch. Molecular Systems Biology. 

Tal Danino, Octavio Mondragon-Palomino, Lev Tsimring & Jeff Hasty (2010). A synchronized 
quorum of genetic clocks. Nature. 

Marcel Tigges, Tatiana T. Marquez-Lago, Jorg Stelling & Martin Fussenegger (2009). A tunable 
synthetic mammalian oscillator. Nature. 

Sergi Regot, Javio Macia el al. (2010). Distributed biological computation with multicellular 
engineered networks. Nature. 

Martin  Fussenegger, (2010). Synchronized bacterial clocks. Nature. 

Andrew H Babiskin and  Christina D Smolke, (2011). A synthetic library of RNA control 
modules for predictable tuning of gene expression in yeast. Molecular Systems Biology. 

Santhosh Palani and Casim A Sarkar, (2011).  Synthetic conversion of a graded receptor signal 
into a tunable, reversible switch. Molecular Systems Biology. 

Nancy Kopell, (2002). Synchronizing genetic relaxation oscillation by intercell signaling. PNS 


