1. Create an organism that is kan resistant (strong/weak)

Answer:

-Promoter: BBa_J23117 (162 output) or strong
-RBS: BBa_B0033 (weak) or strong
-BBa_J31003 (kan resistance)
-Terminator: Ba_B0014
2.

Use BioBricks to design an E. Coli which smells weakly of flowers, and is kan resistant

Answer:

-Promoter: BBa_J23117 (162 output),
-RBS: BBa_B0033 (weak)
-BBa_J45002 (flower smell)
-BBa_J31003 (kan resistance)

3.

Create a protein that will give "Gain" detergent a run for it's money, making it smell amazing!

Answer:

-Promoter: BBa_J23106 (strong)
-RBS: BBa_B0030 (strong)

- Protein Coding Sequence: BBa_J45002 (SAM:benzoic acid carboxyl methyltransferase; converts benzoic acid to methyl benzoate (floral odor))
-Transcription Terminator: Ba_B0014

4.

Create a weakly toxic organism.

Answer:

-Promoter: BBa_J23117 (162)
-RBS: BBa_B0033 (weak)
-Protein: BBa_J07009 (toxicity-gene activator from Vibrio cholerae)
-Transcription Terminator: Ba_B0014/BBa_B1007

BONUS +2 points

Find a sequence to cleave proteins to further the life of HIV. The protein sequence is only compatible with a RFP promoter that is paired to an Anderson RBS. To terminate the coding rnpB terminator is used.

Answer:

-Promoter: BBa_J23100 (RFP Promoter)
-RBS: BBa_J61106 (Anderson RBS)
-Protein: BBa_1712667 (HIV-1 aspartyl protease). HIV-1 aspartyl protease is a protease that is essential for the life-cycle of HIV and cleaves proteins at specific aminoacid sequence.
-Terminator: BBa_J61048 (rnpB terminator)

Create a protein that is involved in cell lysis and death.

Answer:

Promoter:

- BBa_J23103 strength weak-17 units
-Ribosome Binding Site: J61107 strength - weak
-Protein Coding Sequence:
BBa_K112300 - lambda lysozyme - lysis and cell death protein only compatible with J23103 promoters and J61107 ribosome binding sites.
-Terminator: J61107 - Terminates 90% of all sequence that is being transcribed

