Preparation

Considering the Hill equation in the simplification DDEs, $\mathrm{A} 1_{\mathrm{c} 1}$ and $\mathrm{K}_{\mathrm{M} 1} / \rho_{1}$ should be the same order of magnitude, thus $\mathrm{K}_{\mathrm{M} 1} / \rho_{1}$ is a well measurement of quantities of $\mathrm{A} 1_{\mathrm{c} 1}$. We have:

$$
\left[\mathrm{A} 1_{\mathrm{c} 1}\right] \sim \mathrm{K}_{\mathrm{M} 1} / \rho_{1}
$$

Similarly,

$$
\left[\mathrm{A} 2_{\mathrm{C} 2}\right] \sim \mathrm{K}_{\mathrm{M} 4} / \rho_{2}
$$

In equation (20) (23), Let:

$$
d \mathrm{~A} 1_{\mathrm{c} 1} / d t=0, d \mathrm{~A} 2_{\mathrm{c} 2} / d t=0
$$

We have:

$$
\left[\mathrm{A}_{\mathrm{e}}\right] \sim \frac{\left(k_{a}+\gamma\right) \cdot \mathrm{K}_{\mathrm{M} 1}}{\gamma \cdot \rho_{1}},\left[\mathrm{~A}_{\mathrm{e}}\right] \sim \frac{\left(k_{b}+\gamma\right) \cdot \mathrm{K}_{\mathrm{M} 4}}{\gamma \cdot \rho_{2}}
$$

In equation (24) (25), Let:

$$
d \mathrm{~A} 1_{\mathrm{e}} / d t=0, d \mathrm{~A} 2_{\mathrm{e}} / d t=0
$$

We have:

$$
\begin{aligned}
& {\left[\mathrm{A1}_{\mathrm{c} 2}\right] \sim \frac{\mathrm{K}_{\mathrm{M} 1}}{\rho_{1}} \cdot\left(1+\frac{\mu}{\gamma} \cdot \frac{1-\mathrm{p} \cdot\left(1+\mathrm{n}_{12}\right)}{\mathrm{p}}\right)} \\
& {\left[\mathrm{A} 2_{\mathrm{c} 1}\right] \sim \frac{\mathrm{K}_{\mathrm{M} 4}}{\rho_{2}} \cdot\left(1+\frac{\mu}{\gamma} \cdot \frac{1-\mathrm{p} \cdot\left(1+\mathrm{n}_{12}\right)}{\mathrm{p} \cdot \mathrm{n}_{12}}\right)}
\end{aligned}
$$

Define:

$$
\begin{gathered}
x_{1}=\frac{\mathrm{A} 1_{\mathrm{c} 1}}{\mathrm{~K}_{\mathrm{M} 1 / \rho_{1}}}, \quad x_{2}=\frac{\mathrm{A} 1_{\mathrm{c} 2}}{\mathrm{~K}_{\mathrm{M} 1 / \rho_{1}}} \cdot \frac{1+\frac{\mu}{\gamma} \cdot \frac{1-\mathrm{p}\left(1+\mathrm{n}_{12}\right)}{\mathrm{p}}}{}, \\
y_{1}=\frac{\mathrm{A} 2_{\mathrm{c} 1}}{\mathrm{~K}_{\mathrm{M} 4} / \rho_{2}} \cdot \frac{1}{1+\frac{\mu}{\gamma} \cdot \frac{1-\mathrm{p}\left(1+\mathrm{n}_{12}\right)}{\mathrm{p} \cdot \mathrm{n}_{12}}, \quad y_{2}=\frac{\mathrm{A} 2_{\mathrm{C} 2}}{\mathrm{~K}_{\mathrm{M} 4} / \rho_{2}},} \\
x_{e}=\frac{\mathrm{A} 1_{\mathrm{e}}}{\mathrm{~K}_{\mathrm{M} 1} / \rho_{1}} \cdot \frac{k_{a}+\gamma}{\gamma}, \quad y_{e}=\frac{\mathrm{A} 2_{\mathrm{e}}}{\mathrm{~K}_{\mathrm{M} 4} / \rho_{2}} \cdot \frac{k_{b}+\gamma}{\gamma}, \quad t^{*}=\gamma \cdot t
\end{gathered}
$$

Define:

$$
a=\frac{k_{a}}{\gamma}, \quad b=\frac{k_{b}}{\gamma}, \quad \mathrm{u}=\frac{\mu}{\gamma}, \quad \mathrm{v}=\frac{p}{1-p\left(1+\mathrm{n}_{12}\right)}, \quad \mathrm{m}=\frac{\rho_{1}}{\mathrm{~K}_{\mathrm{M} 1}} \cdot \frac{k_{p 2}}{r}, \quad \mathrm{n}=\frac{\rho_{2}}{\mathrm{~K}_{\mathrm{M} 4}} \cdot \frac{k_{p 1}}{r}
$$

The dimensionless equations are as follows:

$$
\begin{gather*}
\frac{d x_{1}}{d t^{*}}=-(a+1) \cdot x_{1}+(1+a) \cdot x_{e} \tag{26}\\
\frac{d y_{2}}{d t^{*}}=-(b+1) \cdot y_{2}+(1+b) \cdot y_{e} \tag{27}\\
\frac{d x_{2}}{d t^{*}}=m \frac{1}{1+u / \mathrm{v}} \cdot \frac{1}{1+y_{2}\left(t^{*}-\tau_{1}^{*}\right)^{n 2}}+\frac{1}{1+u / \mathrm{v}} \cdot \frac{1}{a+1} x_{\varepsilon}-(a+1) x_{2} \tag{28}\\
\frac{d y_{1}}{d t^{*}}=n \frac{1}{1+u / \mathrm{vn}_{12}} \cdot \frac{x_{1}\left(t^{*}-\tau_{2}^{*}\right)^{n 1}}{1+x_{1}\left(t^{*}-\tau_{2}^{*}\right)^{n 1}}+\frac{1}{1+u / \mathrm{vn}_{12}} \cdot \frac{1}{b+1} y_{e}-(b+1) y_{1} \tag{29}\\
\frac{d x_{e}}{d t^{*}}=-\left(u+\left(1+\mathrm{n}_{12}\right) \cdot v\right) \cdot x_{\varepsilon}+(1+a) \cdot v \mathrm{n}_{12} \cdot x_{1}+(1+a) \cdot v \cdot\left(1+\frac{\mathrm{u}}{\mathrm{v}}\right) x_{2} \tag{30}\\
\frac{d y_{e}}{d t^{*}}=-\left(u+\left(1+\mathrm{n}_{12}\right) \cdot v\right) \cdot y_{e}+(1+b) \cdot v \cdot y_{2}+(1+b) \cdot v \mathrm{n}_{12} \cdot\left(1+\frac{\mathrm{u}}{\mathrm{vn}_{12}}\right) y_{1} \tag{31}
\end{gather*}
$$

