Team:Washington

From 2011.igem.org

(Difference between revisions)
Line 1: Line 1:
{{Template:Team:Washington/Templates/Header}}
{{Template:Team:Washington/Templates/Header}}
Current biofuels are made up of compounds that have properties that make them not a perfect substitute for gasoline. A much better solution would be to use bacteria to produce alkanes, the main chemical found in gasoline. This system would allow for the production of net-carbon neutral gasoline from organisms that can directly or indirectly utilize carbon dioxide. One of the goals of our team is to optimize alkane production in E. coli as a model for alkane production in such organisms.
Current biofuels are made up of compounds that have properties that make them not a perfect substitute for gasoline. A much better solution would be to use bacteria to produce alkanes, the main chemical found in gasoline. This system would allow for the production of net-carbon neutral gasoline from organisms that can directly or indirectly utilize carbon dioxide. One of the goals of our team is to optimize alkane production in E. coli as a model for alkane production in such organisms.
 +
 +
Celiac disease is a genetic disorder in which the human digestive system is unable to properly process gluten, a protein found in wheat. Several attempts to produce an enzyme capable of cleaving gluten have been made, but no viable enzyme has been fully implimented. Our team is attempting to engineer an enzyme capable of both surviving in the digestive system, and be able to still cleave gluten.
Celiac disease is a genetic disorder in which the human digestive system is unable to properly process gluten, a protein found in wheat. Several attempts to produce an enzyme capable of cleaving gluten have been made, but no viable enzyme has been fully implimented. Our team is attempting to engineer an enzyme capable of both surviving in the digestive system, and be able to still cleave gluten.

Revision as of 20:21, 2 September 2011

Current biofuels are made up of compounds that have properties that make them not a perfect substitute for gasoline. A much better solution would be to use bacteria to produce alkanes, the main chemical found in gasoline. This system would allow for the production of net-carbon neutral gasoline from organisms that can directly or indirectly utilize carbon dioxide. One of the goals of our team is to optimize alkane production in E. coli as a model for alkane production in such organisms.


Celiac disease is a genetic disorder in which the human digestive system is unable to properly process gluten, a protein found in wheat. Several attempts to produce an enzyme capable of cleaving gluten have been made, but no viable enzyme has been fully implimented. Our team is attempting to engineer an enzyme capable of both surviving in the digestive system, and be able to still cleave gluten.