Team:UTP-Panama/Project

From 2011.igem.org

(Difference between revisions)
(Project Description)
(Project Description)
 
(43 intermediate revisions not shown)
Line 42: Line 42:
|-
|-
|style="background-image: url(https://static.igem.org/mediawiki/2011/1/13/Fndo1.png); background-color: #FFFFFF" width="75px" valign="top"|
|style="background-image: url(https://static.igem.org/mediawiki/2011/1/13/Fndo1.png); background-color: #FFFFFF" width="75px" valign="top"|
 +
<div>
 +
<br>[[Image:Logoigempeginav1.png|150px|center|link=https://2011.igem.org/Main_Page]]
 +
</div>
<br><center>
<br><center>
[[Team:UTP-Panama/Home | <font face="verdana" style="color:#663366"> '''Home''' </font>]] <br><br>
[[Team:UTP-Panama/Home | <font face="verdana" style="color:#663366"> '''Home''' </font>]] <br><br>
Line 47: Line 50:
[[Team:UTP-Panama/Project | <font face="verdana" style="color:#663366"> '''The Project''' </font>]] <br><br>
[[Team:UTP-Panama/Project | <font face="verdana" style="color:#663366"> '''The Project''' </font>]] <br><br>
[[Team:UTP-Panama/Parts | <font face="verdana" style="color:#663366"> '''Parts''' </font>]] <br><br>
[[Team:UTP-Panama/Parts | <font face="verdana" style="color:#663366"> '''Parts''' </font>]] <br><br>
-
[[Team:UTP-Panama/Modelling| <font face="verdana" style="color:#663366"> '''Project Design''' </font>]] <br><br>
+
[[Team:UTP-Panama/Modelling| <font face="verdana" style="color:#663366"> '''Project & Experiments Design''' </font>]] <br><br>
[[Team:UTP-Panama/Human Practice| <font face="verdana" style="color:#663366"> '''Human Practice''' </font>]] <br><br>
[[Team:UTP-Panama/Human Practice| <font face="verdana" style="color:#663366"> '''Human Practice''' </font>]] <br><br>
[[Team:UTP-Panama/Notebook | <font face="verdana" style="color:#663366"> '''Notebook''' </font>]] <br><br>
[[Team:UTP-Panama/Notebook | <font face="verdana" style="color:#663366"> '''Notebook''' </font>]] <br><br>
Line 53: Line 56:
[[Team:UTP-Panama/Data Page| <font face="verdana" style="color:#663366"> '''Data Page''' </font>]] <br><br>
[[Team:UTP-Panama/Data Page| <font face="verdana" style="color:#663366"> '''Data Page''' </font>]] <br><br>
[[Team:UTP-Panama/Sponsors| <font face="verdana" style="color:#663366"> '''Sponsors''' </font>]] <br><br>
[[Team:UTP-Panama/Sponsors| <font face="verdana" style="color:#663366"> '''Sponsors''' </font>]] <br><br>
 +
[[File:Renbo-move.gif|Center]]
|width="880" valign="top" style="padding: 10px; border: 5px solid #660000; color: #000; background-color: #white" |  
|width="880" valign="top" style="padding: 10px; border: 5px solid #660000; color: #000; background-color: #white" |  
Line 66: Line 70:
== INTRODUCTION ==
== INTRODUCTION ==
-
En la ingeniería se necesitan de sensores robustos y que puedan funcionar bajo diferentes condiciones y rangos.
+
<div align="justify">In the engineering field, robust sensors are needed, and they must be able to work under different conditions and ranges.
-
En pasadas ediciones de iGEM se han dado intentos por lograr que cada vez más los microorganismos (as machines & sensors) resistan y funcionen antes divesas condiciones de estres.
+
-
El UTP-Panama en su visión de desarrollar herramientas ingenieriles a partir de biotecnología, se preocupo por mejorar y crear sensores más robustos a las condiciones ambientales y climáticas.  
+
In past iGEM editions, there were attempts to get more and more organisms, such as machines & sensors, to be functional and resistant into multiple stress conditions.
-
En este sentido uno de los mayores retos esta en la capacidad de los microorganismos de seguir trabajando bajo cambios de temperatura, ya que pierden capacidad a bajas temperaturas (D’amico, et al. 2006). Este problema ha sido atacado por diversos equipo como el UNAM-Cinvestav 2010, utilizando el CspA promoter como un mejor promotor para bajas temperaturas en combinación con la proteina anticongelante (AFP) [1].
+
The UTP-Panama team in its vision to develop engineering tools from biotechnology, seeks to create and improve more robust sensors to environmental and climatic conditions.
-
Nosotros el UTP-Panamá Team busca extender el rango de sensores a partir de la utilización de la AOX enzyme (Alternative oxidase), la cual principalmente ha sido diseñada para responder a Cold-shock, elevando la temperatura. A continuación explicamos porque.
+
-
El biosensor escogido para las mejoras es el Nitrate Biosensor (PyeaR - GFP composite) developed by Team BCCS-Bristol 2010, el cual es un sensor para medir los niveles de Nitrogeno (nutrientes) en el suelo, parametro muy importante para  la actividad agricola
+
-
== Project Description==
+
In this sense, one of the biggest challenges is to give microorganisms the ability to continue working under temperature changes, since they loose capacity at low temperatures (D'amico, et al. 2006). This problem has been attacked by different teams, like the UNAM-Cinvestav 2010, using the CspA promoter as a better promoter for low temperatures in combination with an antifreeze protein (AFP) [1]. Our Team, the UTP-Panama seeks to extend the range of sensors from the use of the AOX enzyme (Alternative oxidase), which primarily has been designed to be expressed in response to a Cold-shock, raising the temperature as we explain next.
-
The original Biobricks para sensar los niveles de Nitratos en el suelo desarrollado por Bristol iGEM Team 2010[2], estaba diseñado para funcionar a temperaturas ambientes, en especial para 37°C, utilizando el Biobricks PyeaR promoter[3].
+
The biosensor chosen for the improvements is the Nitrate Biosensor (PyeaR - composite GFP) developed by BCCS-Bristol Team 2010, which is a sensor that measures levels of nitrogen (nutrients) on the ground, (important parameter for agriculture)</div>
-
Nosotros el UTP-Panama iGEM team buscamos extender el rango de funcionamiento optimo del sensor desarrollado por Bristol a temperaturas por debajo de los 20°C, ya que muchos de los cultivos en Tierras altas (cafe y frutas), se encuentran en este rango.
+
-
Para resolver este problemas encontramos que la utilización del AOX enzyme (Alternative oxidase), gene responsible for thermogenesis in the sacred lotus[4], principalmente utilizada en Synthetic Biology  para generar un aumento en  la temperatura periplasmatica, producia un interesante aumento en el crecimiento y densidades bacteriana con la dismunición de la temperatura (picture 1 & 2).
+
-
Nosotros el UTP-Panama iGEM Team desarrollamos un nuevo "device" by combining the two parts, the AOX periplasmatic heat generator (Biobrick BBa_K410000) and the Nitrates biosensor (biobrick BBa_K381001), to create that we call THE RENBO, the first of a family of improved Biosensor that the UTP-Panama Team want to create.
+
-
'''Picture 1''' (source Gatech iGEM Team 2010)<br>
+
== Project Description==
-
Show taht at 37°C the part with the AOX gene growth
+
-
[[File:growth at 37.jpg]]<br>
+
 +
<div align="justify">
 +
The original BioBrick that senses the levels of nitrates in soil developed by Bristol iGEM Team 2010 [2], was designed to operate at room temperatures, especially for 37 ° C using the PyeaR BioBricks promoter [3].
-
'''Picture 2''' (source Gatech iGEM Team 2010)<br>
+
Our team seeks to extend the range of optimal functioning of the sensor developed by Bristol at temperatures below
-
[[File:Bacterial growth 15°C.jpg]]<br>
+
20 ° C, as many of the crops in highlands (coffee and fruits), are in this range. To solve this problem we found that the use of the AOX enzyme (Alternative oxidase) gene responsible for thermogenesis in the sacred lotus [4], mainly used in Synthetic Biology to generate an increase in periplasmic temperature, produced an interesting increase in the growth and downsizing bacterial densities in temperature [5]. This part uses a HybB promoter [6] for "cold shock".
-
 
+
We, the UTP-Panama iGEM Team developed a new "device" by Combining the two parts, the AOX periplasmatic heat generator (BioBrick BBa_K410000) and the Nitrates biosensor (BioBrick BBa_K381001), to create that we call The Renbo, to ensure that our meters Nutrient operate at low temperatures. The Renbo is the first of a family of Improved Biosensor that the UTP-Panama Team plans to create.
-
 
+
 +
</div>
 +
===Future Develops===
 +
<div align="justify">
 +
The next step in our project is to interchange the HybB promoter by the CspA promoter (BBa_K328001), these will produce an anti freeze protein that prevents ice crystals formation in the cell, by applying these we expect E.coli to survive and also perceive an increase on the genetic expression of our Escherichia Coli and still be able to sense the nitrate and nitrites on even lower temperatures than 15ºC (limit temperature of RENBO).
<br>
<br>
-
 
+
</div>
====The original BrainStorms ideas====
====The original BrainStorms ideas====
Line 106: Line 107:
</html>
</html>
-
==REFERENCES==
+
==Our Project Design==
-
[1]https://2010.igem.org/Team:Mexico-UNAM-CINVESTAV/Project/Our_project
+
<div align="justify">
-
[2]http://partsregistry.org/Part:BBa_K216005
+
The Bristol BBa_k381001 encodes an expression of GFP in response of Nitrate or Nitrites that expresses fluorescent signals upon nutrient detection, its principal application is that allows farmers to quantify soil nutrient content.
-
 
+
The BBa_k410000 is a fusion of the HydB cold shock promoter, the OmpA a signal peptide, and AOX 1 . AOXa is a alternative oxidase found in Sacred Lotus. This is going to produce a increase of heat above ambient temperature as follow:
-
==Our Project Details==
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 2 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== The Experiments ===
+
· From 20 °C to 30 ° C the HydB promoter will express.<br>
 +
· Approximately at 37° the promoter will stop his expression.
 +
By combining  BBa_k38100 and BBa_k410000 we expected our part , the BBa_K672000 , to be able to sense nitrate and nitrites even after  experiencing a cold shock at 20º C, making our BB employable in other places where the temperatures can be as low as 15º C.
 +
</div>
 +
[[File:BBCOMBINATIONreordered.jpg‎|center]]
-
=== Part 3 ===
 
-
== Results ==
+
== REFERENCES==
 +
[1]https://2010.igem.org/Team:Mexico-UNAM-CINVESTAV/Project/Our_project<br>
 +
[2]http://partsregistry.org/Part:BBa_K381001<br>
 +
[3]http://partsregistry.org/Part:BBa_K216005<br>
 +
[4]Grant, N et al. “Two Cys or Not Two Cys? That is the Question; Alternative Oxidase in the Thermogenic Plant sacred Lotus.” Plant Physiology 150 (2009): 987-995.<br>
 +
[5]Cell Density and Growth Rate Monitoring Tables. (available at http://partsregistry.org/Part:BBa_K410000).<br>
 +
[6]http://partsregistry.org/Part:BBa_J45503
-
==REFERENCES==
+
==Aknowledgements==
-
[1]https://2010.igem.org/Team:Mexico-UNAM-CINVESTAV/Project/Our_project
+
To: Dr Nigel Savery
-
[2]http://partsregistry.org/Part:BBa_K381001
+
University of Bristol
-
[3]http://partsregistry.org/Part:BBa_K216005
+
To help us to understand the AgrEcoli Experiments and Project.
-
[4]Grant, N et al. “Two Cys or Not Two Cys? That is the Question; Alternative Oxidase in the Thermogenic Plant sacred Lotus.” Plant Physiology 150 (2009): 987-995.
+

Latest revision as of 05:33, 27 October 2011


RenboProject.jpg


UTP-PANAMÁ TEAM 2011


Universidad Tecnológica de Panamá



Logoigempeginav1.png

Home

The Team

The Project

Parts

Project & Experiments Design

Human Practice

Notebook

Safety

Data Page

Sponsors

Center




Contents

THERMOGENIC RESPONSE NUTRIENT BIOSENSOR (THE RENBO)


INTRODUCTION

In the engineering field, robust sensors are needed, and they must be able to work under different conditions and ranges.

In past iGEM editions, there were attempts to get more and more organisms, such as machines & sensors, to be functional and resistant into multiple stress conditions.

The UTP-Panama team in its vision to develop engineering tools from biotechnology, seeks to create and improve more robust sensors to environmental and climatic conditions.

In this sense, one of the biggest challenges is to give microorganisms the ability to continue working under temperature changes, since they loose capacity at low temperatures (D'amico, et al. 2006). This problem has been attacked by different teams, like the UNAM-Cinvestav 2010, using the CspA promoter as a better promoter for low temperatures in combination with an antifreeze protein (AFP) [1]. Our Team, the UTP-Panama seeks to extend the range of sensors from the use of the AOX enzyme (Alternative oxidase), which primarily has been designed to be expressed in response to a Cold-shock, raising the temperature as we explain next.

The biosensor chosen for the improvements is the Nitrate Biosensor (PyeaR - composite GFP) developed by BCCS-Bristol Team 2010, which is a sensor that measures levels of nitrogen (nutrients) on the ground, (important parameter for agriculture)

Project Description

The original BioBrick that senses the levels of nitrates in soil developed by Bristol iGEM Team 2010 [2], was designed to operate at room temperatures, especially for 37 ° C using the PyeaR BioBricks promoter [3].

Our team seeks to extend the range of optimal functioning of the sensor developed by Bristol at temperatures below 20 ° C, as many of the crops in highlands (coffee and fruits), are in this range. To solve this problem we found that the use of the AOX enzyme (Alternative oxidase) gene responsible for thermogenesis in the sacred lotus [4], mainly used in Synthetic Biology to generate an increase in periplasmic temperature, produced an interesting increase in the growth and downsizing bacterial densities in temperature [5]. This part uses a HybB promoter [6] for "cold shock". We, the UTP-Panama iGEM Team developed a new "device" by Combining the two parts, the AOX periplasmatic heat generator (BioBrick BBa_K410000) and the Nitrates biosensor (BioBrick BBa_K381001), to create that we call The Renbo, to ensure that our meters Nutrient operate at low temperatures. The Renbo is the first of a family of Improved Biosensor that the UTP-Panama Team plans to create.


Future Develops

The next step in our project is to interchange the HybB promoter by the CspA promoter (BBa_K328001), these will produce an anti freeze protein that prevents ice crystals formation in the cell, by applying these we expect E.coli to survive and also perceive an increase on the genetic expression of our Escherichia Coli and still be able to sense the nitrate and nitrites on even lower temperatures than 15ºC (limit temperature of RENBO).


The original BrainStorms ideas

To see the Original Project Description June-July 2011 click here.

Our Project Design

The Bristol BBa_k381001 encodes an expression of GFP in response of Nitrate or Nitrites that expresses fluorescent signals upon nutrient detection, its principal application is that allows farmers to quantify soil nutrient content. The BBa_k410000 is a fusion of the HydB cold shock promoter, the OmpA a signal peptide, and AOX 1 . AOXa is a alternative oxidase found in Sacred Lotus. This is going to produce a increase of heat above ambient temperature as follow:

· From 20 °C to 30 ° C the HydB promoter will express.
· Approximately at 37° the promoter will stop his expression.

By combining BBa_k38100 and BBa_k410000 we expected our part , the BBa_K672000 , to be able to sense nitrate and nitrites even after experiencing a cold shock at 20º C, making our BB employable in other places where the temperatures can be as low as 15º C.

BBCOMBINATIONreordered.jpg


REFERENCES

[1]https://2010.igem.org/Team:Mexico-UNAM-CINVESTAV/Project/Our_project
[2]http://partsregistry.org/Part:BBa_K381001
[3]http://partsregistry.org/Part:BBa_K216005
[4]Grant, N et al. “Two Cys or Not Two Cys? That is the Question; Alternative Oxidase in the Thermogenic Plant sacred Lotus.” Plant Physiology 150 (2009): 987-995.
[5]Cell Density and Growth Rate Monitoring Tables. (available at http://partsregistry.org/Part:BBa_K410000).
[6]http://partsregistry.org/Part:BBa_J45503

Aknowledgements

To: Dr Nigel Savery University of Bristol

To help us to understand the AgrEcoli Experiments and Project.