Team:UCSF/Project

From 2011.igem.org

(Difference between revisions)
(Prototype team page)
(Results)
 
(5 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
 
-
 
-
<html>
 
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
 
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
 
-
This is a template page. READ THESE INSTRUCTIONS.
 
-
</div>
 
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
 
-
You are provided with this team page template with which to start the iGEM season.  You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki.  You can find some examples <a href="https://2008.igem.org/Help:Template/Examples">HERE</a>.
 
-
</div>
 
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
 
-
You <strong>MUST</strong> have a team description page, a project abstract, a complete project description, a lab notebook, and a safety page.  PLEASE keep all of your pages within your teams namespace. 
 
-
</div>
 
-
</div>
 
-
</html>
 
-
 
-
<!-- *** End of the alert box *** -->
 
-
 
{|align="justify"
{|align="justify"
|You can write a background of your team here.  Give us a background of your team, the members, etc.  Or tell us more about something of your choosing.
|You can write a background of your team here.  Give us a background of your team, the members, etc.  Or tell us more about something of your choosing.
Line 46: Line 28:
-
== '''Overall project''' ==
+
Many species of yeast and bacteria readily form biofilms as a means of survival. These biofilms are composed of cells that aggregate to each other or a surface.  This year, the UCSF iGEM team has researched how to develop artificial biofilms via yeast cell surface display.  We are synthetically engineering S. cerevisiae to form biofilm-like interactions that we can control by inducing display of adhesive proteins on the surface. The surface display system that we are using takes advantage of the natural yeast mating receptors, Aga1 and Aga2. We have chosen adhesive proteins from a variety of other organisms in order to create a range of interactions between the cells. The synthetic cell adhesion and interactions we are creating can serve as a model for biofilm formation and other types of cell-cell adhesion.
-
 
+
-
Your abstract
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
== Project Details==
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 2 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== The Experiments ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 3 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
== Results ==
+

Latest revision as of 19:02, 9 September 2011

You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing.
UCSF logo.png

Tell us more about your project. Give us background. Use this is the abstract of your project. Be descriptive but concise (1-2 paragraphs)

Your team picture
Team Example


Home Team Official Team Profile Project Parts Submitted to the Registry Modeling Notebook Safety Attributions



Many species of yeast and bacteria readily form biofilms as a means of survival. These biofilms are composed of cells that aggregate to each other or a surface. This year, the UCSF iGEM team has researched how to develop artificial biofilms via yeast cell surface display. We are synthetically engineering S. cerevisiae to form biofilm-like interactions that we can control by inducing display of adhesive proteins on the surface. The surface display system that we are using takes advantage of the natural yeast mating receptors, Aga1 and Aga2. We have chosen adhesive proteins from a variety of other organisms in order to create a range of interactions between the cells. The synthetic cell adhesion and interactions we are creating can serve as a model for biofilm formation and other types of cell-cell adhesion.