Team:Tokyo Tech

From 2011.igem.org

(Difference between revisions)
Line 2: Line 2:
<html lang="english" xmlns="http://www.w3.org/1999/xhtml" xml:lang="english">
<html lang="english" xmlns="http://www.w3.org/1999/xhtml" xml:lang="english">
<head>
<head>
-
<title>Tokyo Tech 2011</title>
 
<meta http-equiv="content-script-type" content="text/javascript" />
<meta http-equiv="content-script-type" content="text/javascript" />
<meta http-equiv="content-type" content="text/html; charset=Shift_JIS" />
<meta http-equiv="content-type" content="text/html; charset=Shift_JIS" />
Line 35: Line 34:
list-style: none;
list-style: none;
float: left;
float: left;
-
height: 20px;
+
height: 30px;
width: 945px
width: 945px
}
}
Line 53: Line 52:
display: none;
display: none;
position: absolute;
position: absolute;
-
font-size: 14px;
+
font-size: 16px;
opacity: 0.8;
opacity: 0.8;
list-style: none;
list-style: none;
Line 77: Line 76:
background-color: #EFEBEC;
background-color: #EFEBEC;
color: #000000;
color: #000000;
 +
font-size: 13px;
}
}
Line 84: Line 84:
left: 0;
left: 0;
clear: both;
clear: both;
-
height: 180px;
+
height: 190px;
-
width: 752px;
+
width: 945px;
}
}
.main
.main
{
{
position: absolute;
position: absolute;
 +
top: 320px;
left: 160px;
left: 160px;
width: auto;
width: auto;
Line 97: Line 98:
{
{
position: static;
position: static;
-
top: 300px;
+
top: 310px;
margin: 5px 5px 5px 5px;
margin: 5px 5px 5px 5px;
padding: 0 0 0 0;
padding: 0 0 0 0;
Line 144: Line 145:
float: right;
float: right;
}
}
-
 
+
-
        img.center
+
object
{
{
-
float: center;
+
float: none;
-
}
+
}
-->
-->
Line 190: Line 191:
}
}
-
window.onload = function() {
+
function getElementsByClass() {
 +
    var classElements = new Array();
 +
    var allElements = document.getElementsByTagName("*");
 +
    for (i = 0 ; i < allElements.length; i++) {
 +
if (allElements[i].className == 'firstHeading') {
 +
    allElements[i].style.display = 'none';
 +
  // window.alert('発見。');
 +
}
 +
    }
 +
}
 +
 +
window.onload = function() {
 +
getElementsByClass();
var menu = window.document.getElementById('TopMenu');
var menu = window.document.getElementById('TopMenu');
if(menu==null)
if(menu==null)
Line 223: Line 236:
<!-- top box -->
<!-- top box -->
<div class="top">
<div class="top">
-
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0" WIDTH="965" HEIGHT="150" id="Yourfilename" ALIGN="">
+
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0" width="965" height="150" id="Yourfilename" align="">
-
<PARAM NAME=movie VALUE="https://static.igem.org/mediawiki/2011/4/4d/Header.swf"> <PARAM NAME=quality VALUE=high> <PARAM NAME=bgcolor VALUE=#FFFFFF> <EMBED src="https://static.igem.org/mediawiki/2011/4/4d/Header.swf" quality=high bgcolor=#FFFFFF WIDTH="965" HEIGHT="150" NAME="Yourfilename" ALIGN="" TYPE="application/x-shockwave-flash" PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED> </OBJECT>  
+
<param name="movie" value="https://static.igem.org/mediawiki/2011/4/4d/Header.swf">
 +
<param name="quality" value="high">
 +
<param name="bgcolor" value="#FFFFFF">
 +
<embed src="https://static.igem.org/mediawiki/2011/4/4d/Header.swf" quality="high" bgcolor="#FFFFFF" width="965" height="150" name="Yourfilename" align="" type="application/x-shockwave-flash" pluginspage="http://www.macromedia.com/go/getflashplayer">
 +
</embed>
 +
</object>
<!-- list of top menu -->
<!-- list of top menu -->
<div id="navigation">
<div id="navigation">
Line 255: Line 273:
<li id="menu_Extra">
<li id="menu_Extra">
More
More
-
<ul>
+
<ul style="width:210px;">
<li><a href="https://2011.igem.org/Team:Tokyo_Tech/Safety">Safety</a></li>
<li><a href="https://2011.igem.org/Team:Tokyo_Tech/Safety">Safety</a></li>
<li><a href="https://2011.igem.org/Team:Tokyo_Tech/Attribution_and_Contributions.htm">Attribution and Contributions</a></li>
<li><a href="https://2011.igem.org/Team:Tokyo_Tech/Attribution_and_Contributions.htm">Attribution and Contributions</a></li>
Line 274: Line 292:
<!-- left menu list -->
<!-- left menu list -->
-
<div style="min-height:2200px; float: left">
+
<div style="min-height:2400px; float: left">
-
<div id="LeftMenu" style="top:50px;">
+
<div id="LeftMenu" style="top:70px;">
<!--list of page menu: DO NOT WRITE LINKS NOT WRITTEN IN THIS PAGE -->
<!--list of page menu: DO NOT WRITE LINKS NOT WRITTEN IN THIS PAGE -->
<ul>
<ul>
Line 282: Line 300:
<li><a href="#rain"> Make it rain</a></li>
<li><a href="#rain"> Make it rain</a></li>
<li><a href="#urea"> Urea Coolers</a></li>
<li><a href="#urea"> Urea Coolers</a></li>
-
                <li><a href="#manabi"> Human Practice</a></li>
+
<li><a href="#manabi"> Human Practice</a></li>
</ul>
</ul>
</div>
</div>
Line 294: Line 312:
<h2 id="Overall"> Overview: Cool down in summer with our Rock-Paper-Scissors Game</h2>
<h2 id="Overall"> Overview: Cool down in summer with our Rock-Paper-Scissors Game</h2>
-
<img src="https://static.igem.org/mediawiki/2011/2/24/Happy-rps.png" width="50%" style="float:right;"/>
+
<img src="https://static.igem.org/mediawiki/2011/2/24/Happy-rps.png" width="408px" alt="Project Overview" style="float:right;" />
<p>
<p>
-
When summer comes it brings vacations, so students have plenty time to have fun. But summer means hot weather! In light of these circumstances, we designed a game that can be played between<i> E.coli</i> and humans, and that the winner of the game can get refreshing prizes! Dear students, let us introduce you to the first human-bacteria Rock-Paper-Scissors game! Win and get a rain shower, plus a “urea cooler”!
+
When summer comes it brings vacations, so students have plenty time to have fun.  
 +
But summer means hot weather! In light of these circumstances,  
 +
we designed a game that can be played between<span class="name"> E.coli</span> and humans,  
 +
and that the winner of the game can get refreshing prizes!  
 +
Dear students, let us introduce you to the first human-bacteria Rock-Paper-Scissors game!  
 +
Win and get a rain shower, plus a “urea cooler”!
</p>
</p>
   
   
-
<h2 id="RPS"> Rock-Paper-Scissors (RPS) Game</h2>
+
<h2 id="RPS"> Rock-Paper-Scissors (RPS) Game </h2>
-
<img src="https://static.igem.org/mediawiki/2011/1/10/TokyoTech_home_fig2.png" alt="RPS" class="fig" />
+
<img src="https://static.igem.org/mediawiki/2011/1/10/TokyoTech_home_fig2.png" alt="RPS" width="480px" class="fig" />
<p>
<p>
-
So, how to play RPS with a handless bacteria? Instead of hands, we use different signaling molecules corresponding either to rock, paper or scissors. In our set of six signaling molecules, humans use IPTG, aTc and salicylate, and E. coli uses 3O-C6-HSL, 3O-C12-HSL and AI-2. In each case, these signaling molecules correspond to rock, paper and scissors respectively.
+
So, how to play RPS with a handless bacteria?  
 +
Instead of hands, we use different signaling molecules corresponding  
 +
either to rock, paper or scissors.  
 +
In our set of six signaling molecules, humans use IPTG,  
 +
aTc and salicylate, and <span class="name">E. coli</span> uses  
 +
3O-C6-HSL, 3O-C12-HSL and AI-2. In each case,  
 +
these signaling molecules correspond to rock, paper and scissors respectively.
</p>
</p>
 +
<p>
<p>
-
The next step is to design a way to know who wins the RPS game. That is when the<i> E. coli</i> judge team comes in! Each judge has an AND-gate promoter which produces a single output based on two inputs, human side and<i> E.coli</i> side signaling molecules. Since we want the output to be visible, we use either GFP, RFP or CFP to indicate whether humans win, lose or it is a tie, respectively.  
+
The next step is to design a way to know who wins the RPS game.  
 +
That is when the<span class="name"> E. coli</span> judge team comes in!  
 +
Each judge has an AND-gate promoter which produces a single output  
 +
based on two inputs, human side and<span class="name"> E.coli</span>  
 +
side signaling molecules. Since we want the output to be visible,  
 +
we use either GFP, RFP or CFP to indicate whether humans win,  
 +
lose or it is a tie, respectively.  
</p>
</p>
 +
<p>
<p>
-
                Lastly, we need to make sure <span  class="name">E. coli</span> follows the rules of the game by synthetizing only one signaling molecule every time it plays. Importantly, we have to design the opponent <span class="name">E. coli</span> to be able to choose its signal randomly for a fare game, because <i>E. coli</i> will continue to lose if<i> E. coli</i> always produce same signaling molecule. In a view of these needs, we designed three randomizers that satisfy the conditions for the game. Single Colony Isolation, Survival of single strain and Conditional Knockout.<a href="https://2011.igem.org/Team:Tokyo_Tech/Projects/RPS-game/index.htm">(see more...)</a>
+
Lastly, we need to make sure <span  class="name">E. coli</span> follows  
 +
the rules of the game by synthetizing only one signaling molecule  
 +
every time it plays. Importantly, we have to design the opponent  
 +
<span class="name">E. coli</span> to be able to choose its signal  
 +
randomly for a fare game, because <span class="name">E. coli</span>  
 +
will continue to lose if <span class="name">E. coli</span> always  
 +
produce same signaling molecule. In a view of these needs,  
 +
we designed three randomizers that satisfy the conditions for the game.  
 +
Single Colony Isolation, Survival of single strain and Conditional Knockout.  
 +
<a href="https://2011.igem.org/Team:Tokyo_Tech/Projects/RPS-game/index.htm">(see more...)</a>
</p>
</p>
   
   
-
<h2 id="rain"> Make it Rain</h2>
+
<h2 id="rain"> Make it Rain </h2>
-
<img src="https://static.igem.org/mediawiki/2011/7/7b/TokyoTech_home_fig3.png" alt="Raining" class="fig" />
+
<img src="https://static.igem.org/mediawiki/2011/7/7b/TokyoTech_home_fig3.png" alt="Raining" width="480px" class="fig" />
<p>
<p>
-
Playing RPS with <i>E. coli</i> during summer was fun, but, even if humans won, pleasures did not last long since we soon returned to complaining about the hot weather. As a prize for humans who win in our RPS game, we designed an <i>E. coli</i> that can make it rain, making the hot summer more fun and refreshing (let alone applications in agriculture). To make it rain, we constructed an isoprene synthetizing <span class="name">E. coli</span>. Photo-oxidized isoprene acts as a condensation nucleus(Colin D. O‘Dowd <i> et al</i>., 2002, Nature), which might cause rain, even though it is present in very low concentrations.<a href="https://2011.igem.org/Team:Tokyo_Tech/Projects/making-rain/index.htm">(see more...)</a><br />
+
Playing RPS with <span class="name">E. coli</span> during summer was fun, but,  
 +
even if humans won, pleasures did not last long since we soon returned to  
 +
complaining about the hot weather. As a prize for humans who win in our RPS game,  
 +
we designed an <span class="name">E. coli</span> that can make it rain,  
 +
making the hot summer more fun and refreshing (let alone applications in agriculture).  
 +
To make it rain, we constructed an isoprene synthetizing <span class="name">E. coli</span>.  
 +
Photo-oxidized isoprene acts as a condensation nucleus(Colin D. O‘Dowd <i> et al</i>., 2002, Nature),  
 +
which might cause rain, even though it is present in very low concentrations.
 +
<a href="https://2011.igem.org/Team:Tokyo_Tech/Projects/making-rain/index.htm">(see more...)</a>
</p>
</p>
   
   
-
<h2 id="urea">Urea Coolers</h2>
+
<h2 id="urea"> Urea Coolers </h2>
-
<img src="https://static.igem.org/mediawiki/2011/e/ef/Home-urea.png" alt="Urea cooler" class="fig" />
+
<img src="https://static.igem.org/mediawiki/2011/e/ef/Home-urea.png" alt="Urea cooler" width="480px" class="fig" />
<p>
<p>
-
          Coolers can be made by adding urea to water, since dissolving urea in water is an endothermic reaction (-57.8 cal/g). We can make <i>E.coli</i> synthetize urea just by introducing a gene encoding arginase!
+
Coolers can be made by adding urea to water, since dissolving urea in water  
-
        </p>
+
is an endothermic reaction (-57.8 cal/g). We can make <span class="name">E.coli</span>  
-
        <p>
+
synthetize urea just by introducing a gene encoding arginase!
-
          To analyze how we obtain even more urea from our <i>E. coli</i>, elementary flux analysis (Schuste<i>et al.</i> 2000) identified metabolic routes that are both stoichiometrically and thermodynamically feasible for a group of enzymes. Making use of it we can tell which substrates and pathways are the best for obtaining more urea.<a href="https://2011.igem.org/Team:Tokyo_Tech/Projects/Urea-cooler/index.htm">(see more...)</a> <br />  
+
</p>
 +
<p>
 +
To analyze how we obtain even more urea from our <span class="name">E. coli</span>,  
 +
elementary flux analysis (Schuste<i>et al.</i> 2000) identified metabolic routes  
 +
that are both stoichiometrically and thermodynamically feasible for a group of enzymes.  
 +
Making use of it we can tell which substrates and pathways are the best for obtaining  
 +
more urea.<a href="https://2011.igem.org/Team:Tokyo_Tech/Projects/Urea-cooler/index.htm">(see more...)</a>
</p>
</p>
-
<h2 id="manabi"> Human Practice</h2>
+
<h2 id="manabi"> Human Practice </h2>
-
        <img src="https://static.igem.org/mediawiki/2011/2/22/Manabi-ppt2.png" alt="Creating Perception" class="fig" />
+
<img src="https://static.igem.org/mediawiki/2011/2/22/Manabi-ppt2.png" alt="Creating Perception" width="480px" class="fig" />
-
        <p>
+
<p>
-
          We love Synthetic Biology, and to share our passion with other people, we did educational activities as part of our human practices. We would like to spread what is made and aimed by synthetic biology and iGEM. For this event, we created “iGEM Card Game”, posters and questionnaire.<a href="https://2011.igem.org/Team:Tokyo_Tech/HumanPractice.htm">(see more...)</a><br />
+
We love Synthetic Biology, and to share our passion with other people,  
-
        </p>
+
we did educational activities as part of our human practices.  
-
+
We would like to spread what is made and aimed by synthetic biology and iGEM.  
-
+
For this event, we created “iGEM Card Game”, posters and questionnaire.
 +
<a href="https://2011.igem.org/Team:Tokyo_Tech/HumanPractice.htm">(see more...)</a>
 +
</p>
<!-- ############ End of main contents ############ -->
<!-- ############ End of main contents ############ -->
Line 340: Line 402:
</p>
</p>
<!-- end of under contents -->
<!-- end of under contents -->
 +
 +
<div style="bottom: 0;left: 30; position:fixed; background-color: #000000; opacity:0.8;">
 +
<a onclick="scrollTo(0,0);return false;" onfocus="this.blur();" style="color:#FFFFFF;">Return to Page Top</a>
 +
</div>
<!-- DO NOT WRITE UNDER HERE -->
<!-- DO NOT WRITE UNDER HERE -->
</body>
</body>
</html>
</html>

Revision as of 15:15, 5 October 2011

iGEM Tokyo Tech 2011 Team

Overview: Cool down in summer with our Rock-Paper-Scissors Game

Project Overview

When summer comes it brings vacations, so students have plenty time to have fun. But summer means hot weather! In light of these circumstances, we designed a game that can be played between E.coli and humans, and that the winner of the game can get refreshing prizes! Dear students, let us introduce you to the first human-bacteria Rock-Paper-Scissors game! Win and get a rain shower, plus a “urea cooler”!

Rock-Paper-Scissors (RPS) Game

RPS

So, how to play RPS with a handless bacteria? Instead of hands, we use different signaling molecules corresponding either to rock, paper or scissors. In our set of six signaling molecules, humans use IPTG, aTc and salicylate, and E. coli uses 3O-C6-HSL, 3O-C12-HSL and AI-2. In each case, these signaling molecules correspond to rock, paper and scissors respectively.

The next step is to design a way to know who wins the RPS game. That is when the E. coli judge team comes in! Each judge has an AND-gate promoter which produces a single output based on two inputs, human side and E.coli side signaling molecules. Since we want the output to be visible, we use either GFP, RFP or CFP to indicate whether humans win, lose or it is a tie, respectively.

Lastly, we need to make sure E. coli follows the rules of the game by synthetizing only one signaling molecule every time it plays. Importantly, we have to design the opponent E. coli to be able to choose its signal randomly for a fare game, because E. coli will continue to lose if E. coli always produce same signaling molecule. In a view of these needs, we designed three randomizers that satisfy the conditions for the game. Single Colony Isolation, Survival of single strain and Conditional Knockout. (see more...)

Make it Rain

Raining

Playing RPS with E. coli during summer was fun, but, even if humans won, pleasures did not last long since we soon returned to complaining about the hot weather. As a prize for humans who win in our RPS game, we designed an E. coli that can make it rain, making the hot summer more fun and refreshing (let alone applications in agriculture). To make it rain, we constructed an isoprene synthetizing E. coli. Photo-oxidized isoprene acts as a condensation nucleus(Colin D. O‘Dowd et al., 2002, Nature), which might cause rain, even though it is present in very low concentrations. (see more...)

Urea Coolers

Urea cooler

Coolers can be made by adding urea to water, since dissolving urea in water is an endothermic reaction (-57.8 cal/g). We can make E.coli synthetize urea just by introducing a gene encoding arginase!

To analyze how we obtain even more urea from our E. coli, elementary flux analysis (Schusteet al. 2000) identified metabolic routes that are both stoichiometrically and thermodynamically feasible for a group of enzymes. Making use of it we can tell which substrates and pathways are the best for obtaining more urea.(see more...)

Human Practice

Creating Perception

We love Synthetic Biology, and to share our passion with other people, we did educational activities as part of our human practices. We would like to spread what is made and aimed by synthetic biology and iGEM. For this event, we created “iGEM Card Game”, posters and questionnaire. (see more...)

Return to Page Top