Team:Tec-Monterrey/projectresults/methods

From 2011.igem.org

(Difference between revisions)
 
(16 intermediate revisions not shown)
Line 518: Line 518:
     
     
            
            
-
            <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectoverview">overview</a></p>
+
                  <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectoverview">overview</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectparts">parts</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectparts">parts</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectmodeling">genetic frame</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectmodeling">genetic frame</a></p>
-
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectresults">methods+results</a></p>
+
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectresults/methods">methods</a></p>
 +
            <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectresults">results</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/teamha">human approach</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/teamha">human approach</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectprotocols">protocols</a><p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectprotocols">protocols</a><p>
Line 599: Line 600:
<div class="frame" id="frame1" style="background-color:#e5e5e5;">
<div class="frame" id="frame1" style="background-color:#e5e5e5;">
 +
 +
<br>
<br>
Line 604: Line 607:
<center>
<center>
-
Protein Expression
+
<b>1.1. CelD+estA Construction</b>
</center>
</center>
-
<br>
 
-
 
 +
<br>
<p class="textojustif">
<p class="textojustif">
-
1)    From a relatively fresh plate (<4 weeks) pick a colony and grow O/N at 37C in 5-6ml LB+AMP (or other selection) in a 15ml snap cap tube on a rotator or shaker at 250 rpm.
+
The celD+estA construction was generated by joining the biobricks of the araC-P<sub>BAD</sub> promoter (<a href="http://partsregistry.org/Part:BBa_I13458">BBa_I13458 </a>and <a href="http://partsregistry.org/Part:BBa_K206000"> BBa_K206000</a>),  RBS+phoA signal peptide+celD (<a href="http://partsregistry.org/Part:BBa_K633002">BBa_K633002</a>) and linker+estA (<a href="http://partsregistry.org/Part:BBa_K633001">BBa_K633001</a>) with the biobrick standard assembly protocol (<a href="http://ginkgobioworks.com/support/BioBrick_Assembly_Manual.pdf"> Manual</a>). The expected DNA fragment of the celD+estA construct was confirmed by several restriction endonuclease reactions, and used to transform the <i>Escherichia coli</i> strains BL21SI, Rosetta Gami, XL1 Blue, C43 and BW27783. The <i>E. coli</i> strains BL21SI, Rosetta Gami, XL1 Blue, and C43 were obtained from Invitrogen, Novagen, Agilent and Lucigen, respectively, and the strain BW27783 was donated by <a href="https://2010.igem.org/Team:Tec-Monterrey">Tec-Monterrey 2010</a>.
-
<br>
+
</p>
-
2)   Dilute until 0.1 OD600 in 6ml LB+AMP is achieved
+
-
<br>
+
-
3)   Grow 3-4 hours at 37 C in 15ml snap cap tube in a rotator until 0.6 to 1.0 OD600. Is reached
+
-
<br>
+
-
4)   Prepare 1ml LB+AMP+0.1mM arabinose in a 15ml conical and pre-warm to 37 C about 10min before use.
+
-
<br>
+
-
5)    Add pre-warmed 1ml LB+AMP+0.1 arabinose to the cell culture
+
-
<br>
+
-
6)    Incubate 18 - 24 hours at 30ºC at 250 rpm.
+
-
</p>
+
<br>
<br>
<br>
<br>
Line 627: Line 619:
<center>
<center>
-
Cell Lysate (from Clotech’s xTractor Buffer kit user manual)
+
<b>1.2. CelD+estA Expression</b>
</center>
</center>
<br>
<br>
 +
<p class="textojustif">
 +
The <i>E. coli</i> strains containing the celD+estA construct and non-transformed strains as negative controls were cultured in 6 mL of LB Miller Broth. The initial optical density at 600 nm (OD<sub>600</sub>) was 0.1, from there the batch cultures were incubated at 37°C until an OD<sub>600</sub> of 0.6 was attained. The expression was induced with 0.1mM of L-arabinose and the temperature of postinduction was changed to 30 °C. Culture samples collected from the bioreactor were harvested by centrifugation. Half the volume was used for the whole cell assay and the other half was processed with Clontech x-Tractor kit (Clontech) to obtain the soluble and insoluble fractions of each strain. Both fractions were separated by a 10% SDS-PAGE and visualized with GelCode Blue Stain Reagent (Thermo).
 +
<br>
 +
</p>
-
<p class="textojustif">
 
-
1)    Harvest the bacterial cell culture by centrifugation at 1,000–3,000 x g for 15 min at 4°C. Remove the supernatant.
 
<br>
<br>
-
2)  Add 20 ml of xTractor Buffer to 1 g of cell pellet. Mix gently. Pipet the mixture up and down to fully resuspend pellet
 
<br>
<br>
-
3)  Add 40 μl of 1 unit/μl DNase I solution and 200 μl of 100X lysozyme solution. Add EDTA- free protease inhibitor. Mix gently, pipetting up and down several times.
+
<center>
 +
<b>1.3. CelD+estA Activity</b>
 +
</center>
<br>
<br>
-
4)  Incubate with gentle shaking for 10 min at room temperature. (If desired, you may incubate the solution at 4°C.)
+
<p class="textojustif">  
-
<br>
+
The IUPAC Filter Paper Assay was used to determine the celD+estA activity.  The <i>E. coli</i> strain , Rosetta Gami, was used as a host for the expression of the chimeric protein because it has an improved protein folding system. The assay was applied to the whole-cells, but these were also lysated with x-Tractor Cell lysis Buffer (Clontech), which separated them into soluble and insoluble fractions. The negative controls (C-) of all the samples were non-transformed cells. In the whole-cell cellulase activity experiment and in the cellulase activity of cell-lysates experiment, a t-test was done  with an alpha of 0.05 to prove the hypothesis.
-
5)  Centrifuge the crude lysate at 10,000–12,000 x g for 20 min at 4°C. Carefully transfer the supernatant to a clean tube without disturbing the pellet.
+
</p>
</p>
-
<br>
 
-
<br>
 
-
 
-
<p class="textojustif">
 
-
For pellet homogenization, sonication was carried on adding water at half of initial xTractor buffer volume of each batch culture. Pulses of 5-seconds at level 2 (Branson Sonifier 150) were performed until pellet was resuspended.
 
-
</p>
 
-
<br>
 
-
<br>
 
 +
 +
 +
 +
<br>
 +
<br>
<center>
<center>
-
SacC Amplification
+
<b>2.1. SacC Amplification</b>
</center>
</center>
<br>
<br>
-
 
<p class="textojustif">
<p class="textojustif">
Line 665: Line 655:
<br>
<br>
  <br>
  <br>
 +
 +
<center>
<center>
-
OmpA+sacC Construction
+
<b>2.2. OmpA+sacC Construction</b>
</center>
</center>
 +
<br>
<br>
<p class="textojustif">
<p class="textojustif">
-
The ompA+sacC construction was generated by joining the biobricks of the araC-P<sub>BAD</sub> promoter (<a href="http://partsregistry.org/Part:BBa_I13458">BBa_I13458 </a>and <a href="http://partsregistry.org/Part:BBa_K206000"> BBa_K206000</a>),  RBS (<a href="http://partsregistry.org/Part:BBa_B0034">BBa_B0034</a>), lpp+ompA (<a href="http://partsregistry.org/Part:BBa_K103006">BBa_K103006</a>), and sacC (<a href="http://partsregistry.org/Part:BBa_K633003">BBa_K633003</a>) with the biobrick standard assembly protocol (<a href="http://ginkgobioworks.com/support/BioBrick_Assembly_Manual.pdf"> Manual</a>). The expected DNA fragment of the ompA + sacC construct was confirmed by several restriction endonuclease reactions, and used to transform the <i>Escherichia coli</i> strains BL21SI, Rosetta Gami, XL1 Blue, C43 and BW27783. The <i>E. coli</i> strains BL21SI, Rosetta Gami, XL1 Blue, and C43 were obtained from Invitrogen, Novagen, Agilent and Lucigen, respectively, and the strain BW27783 was donated by <a href="https://2010.igem.org/Team:Tec-Monterrey">Tec-Monterrey 2010</a>.
+
The ompA+sacC construction was generated by joining the biobricks of the araC-P<sub>BAD</sub> promoter (<a href="http://partsregistry.org/Part:BBa_I13458">BBa_I13458 </a>and <a href="http://partsregistry.org/Part:BBa_K206000"> BBa_K206000</a>),  RBS (<a href="http://partsregistry.org/Part:BBa_B0034">BBa_B0034</a>), lpp+ompA (<a href="http://partsregistry.org/Part:BBa_K103006">BBa_K103006</a>), and sacC (<a href="http://partsregistry.org/Part:BBa_K633003">BBa_K633003</a>) with the biobrick standard assembly protocol (<a href="http://ginkgobioworks.com/support/BioBrick_Assembly_Manual.pdf"> Manual</a>). The expected DNA fragment of the ompA + sacC construct was confirmed by several restriction endonuclease reactions, and used to transform the <i>E. coli</i> strains BL21SI, Rosetta Gami, XL1 Blue, C43 and BW27783.
  </p>
  </p>
<br>
<br>
<br>
<br>
 +
 +
<center>
<center>
-
OmpA+sacC Expression
+
<b>2.3. OmpA+sacC Expression</b>
</center>
</center>
 +
<br>
<br>
<p class="textojustif">  
<p class="textojustif">  
Line 686: Line 682:
<br>
<br>
 +
 +
 +
<center>
 +
<b>2.4. SacC Enzymatic Assays</b>
 +
</center>
 +
 +
<br>
 +
<p class="textojustif">
 +
To determine the ompA+sacC activity, EnzyChromTM Fructose Assay Kit (kindly donated by PhD. Fernández) was used. The <i>E. coli</i> BL21 SI was used for the expression of the fusion protein. The assay was applied to the whole-cells, and non-transformed cells were used as a negative control. A t-test was done with an alpha value of 0.05 to compare fructose concentrations of each sample.
 +
</p>

Latest revision as of 20:51, 20 October 2011

wiki

iGEM