Team:Tec-Monterrey/projectresults

From 2011.igem.org

(Difference between revisions)
 
(26 intermediate revisions not shown)
Line 518: Line 518:
     
     
          
          
-
            <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectoverview">overview</a></p>
+
                  <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectoverview">overview</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectparts">parts</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectparts">parts</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectmodeling">genetic frame</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectmodeling">genetic frame</a></p>
-
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectresults">methods+results</a></p>
+
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectresults/methods">methods</a></p>
 +
            <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectresults">results</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/teamha">human approach</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/teamha">human approach</a></p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectprotocols">protocols</a><p>
             <p><a href="https://2011.igem.org/Team:Tec-Monterrey/projectprotocols">protocols</a><p>
Line 600: Line 601:
<br>
<br>
-
<p class="textojustif"> There are several methods to prove the successful transportation of CelD and SacC on the outer membrane of <i>Escherichia coli</i>. In this project, SDS-PAGE of entire cell culture samples, SDS-PAGE of membrane fraction samples, and measurement of enzyme activity of whole-cell-system without chemical or enzymatical purification operation have been considered in order to confirm the presence of active enzymes on the external membrane of <i>E. coli</i>.  
+
<p class="textojustif"> There are several methods to prove the successful transportation of CelD and SacC to the outer membrane of <i>Escherichia coli</i>. In this project, SDS-PAGE of entire cell culture samples, SDS-PAGE of membrane fraction samples, and measurement of enzyme activity of whole-cell-system without chemical or enzymatic purification have been considered to confirm the presence of active enzymes on the external membrane of <i>E. coli</i> external membrane.  
<br>
<br>
<br>
<br>
-
<center><img src="https://static.igem.org/mediawiki/2011/9/9a/Results02.png"> </center>
+
 
 +
 
 +
<center>
<br>
<br>
-
<p class="textojustif">
+
<b>1.1. CelD + estA protein fusion profiles</b></style></center>
-
<style=bold>CelD + estA protein fusion profiles</style>
+
<br>
<br>
-
In order to prove the presence of our proteic fusion (celD+estA) we ran several polyacrylamide gels to determine protein profiles on 6 different expression strains (BL21 SI, BL21 STAR, XL1 Blue, C43, BW 27783 and Rosetta Gami), to determine the correct variable combination, which would represent the best yield for our target protein. Said variables were time and induction temperature.
 
-
<br><br>
 
-
For our first assay, proteins were inducted in the BL21 SI, XL1 Blue, C43, BW 27783 and Rosetta Gami strains at 25°C for 12h. Once the induction time ended, cells were then lysed using the xTractor extraction kit, from Clontech, in order to obtain soluble and insoluble fractions.
 
-
<br><br>
 
-
The order of our polyacrylamide gels is as follows:
 
-
<br>
 
-
As it is seen, lanes corresponding to the insoluble fraction on transformed and induced strains show a thick band at around 100kDa* according to our molecular weight marker (Bio-Rad). Said band is not found in lanes corresponding to negative controls (wild-types and non-induced transformed cells).
 
-
<br><br>
 
-
Based on our results, we can assure that our protein was translated just as planned. Nevertheless, there’s a chance of finding a fraction of our protein as a part of an inclusion body. Then, we ran activity essays to test the correct folding of our protein.
 
-
<br><br>
 
-
*Our protein’s molecular weight was calculated by means of a predictive program based on the amino-acid sequence codified for our protein (http://www.scripps.edu/~cdputnam/protcalc.html).
 
-
<br><br>
 
-
<center>
 
-
    <p><img src="https://static.igem.org/mediawiki/2011/5/5a/Gel_Chucho.jpg" alt="photo3" name="photo3" width="400" id="photo3" /><br />
 
-
      </p>
 
-
</center>
 
-
<br><br>
+
 
-
<p class="textojustif">As our second experiment, the protein profile for 6 expression strains (BL21 SI, BL21 STAR, XL1 Blue, C43, BW 27783 and Rosetta Gami) was produced at a lower temperatura (15°C) for 36h, which attenuated our bacterial metabolism and thus our transcription and traduction rate as well, securing the safe and secure folding of our proteins.
+
<p class="textojustif">  
-
+
All the insoluble fractions of the transformed strains have a significant amount of a protein that matches the predicted weight of our chimeric construct (100kDa), in comparison to their negative controls (insoluble fraction of wild type lysates)(Figure 1). There is also no significant visual difference between each induced strain; this suggests that any strain is a good host for our construct, letting reduce the number of strains in future research. According to Clontech’s buffer kit user manual, our protein could be trapped in the pellet (insoluble phase) because of its high molecular weight (100kD > 40kD) and because it is a membrane- bound protein that can form multiprotein complexes and as we did not use Clontech’s TALON CellThru for direct purification from crude cell lysates (unclarified cell lysates), which is the solution proposed by the user manual in order to further solubilize proteins. Unclarified cell lysates were not further processed. 
-
The order of wells on our gel is as follows:
+
</p><br><br>
-
<br>
+
<center>
<center>
-
     <p><img src="https://static.igem.org/mediawiki/2011/3/39/Gel_Chucho_2.jpg" alt="photo3" name="photo3" width="400" id="photo3" /><br />
+
     <p><img src="https://static.igem.org/mediawiki/2011/0/0d/GelAChucho.png" width="400"/>
-
      </p>
+
<img src="https://static.igem.org/mediawiki/2011/a/ab/GelBChucho.png" width="400"/></p>
</center>
</center>
 +
 +
<p class="textojustif">
 +
<small>Figure 1. Protein profile of cell lysates from culture experiments of <i>E. coli </i> Bl21 SI, C43, XL1 Blue, Rosetta Gami and BW27783. (a) BL21 TNI (1)IF (2)SF. C43 TI (3)IF (4)SF -  TNI (5)IF (6) SF - WT (7)IF (8)SF. (9)PMWM. Xl1 blue, TI (10)IF (11)SF - TNI (12)IF (13) SF - WT (14)IF (15)SF. (b) Rosetta Gami TI (1)IF (2)SF -  TNI (3)IF (4) SF - WT (5)IF (6)SF. BW27783 TI (7)IF (8)SF -  TNI (9)IF (10) SF - WT (11)IF (12)SF.(13) PMWM. BL21SI, TI (14)IF (15)SF. TI – transformed and induced. TNI – transformed and no induced, WT – wild type (C-). SF – soluble fraction. IF – insoluble fraction. PMWM – protein molecular weight marker </small>
 +
</p>
 +
<br><br>
<br><br>
-
<p class="textojustif">In this gel we can see a wide, 100kDa band for the Induced BW27783 lanes in the insoluble fraction. This phenomenon happens on every induced strain. This suggests that the 15°C induction produces better protein folding and fusion, due to the slowdown on <i>E. coli </i>'s relative to its speed at 30 or 37°C.
+
<p class="textojustif"> Future research should include identification of protein membrane display by periplasm extraction, Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form and SEM (Scanning Electron Microscope).  
<br>
<br>
-
 
-
<center><img src="https://static.igem.org/mediawiki/2011/4/40/Results03.png"> </center>
 
<br>
<br>
-
<p class="textojustif"> Click here to read our pdf file with results!</p>
 
-
<p class="textojustif"> <a href="https://static.igem.org/mediawiki/2011/8/8b/Roseta_results.pdf">Roseta Results pdf</a>
 
<br>
<br>
 +
 +
<center>
 +
<br>
 +
<b>1.2.1. Whole-Cell CelD+estA Activity </b></center>
<br>
<br>
-
 
+
<p class="textojustif">
 +
In the whole-cell activity assay (Figure 2) The glucose concentration in celD + estA strain was of 332.04 µM and in the Negative Control (C-) was of 275.85 µM that is a difference in the glucose concentration of 57 µM. The result of the t- test was the rejection of the null hypothesis, suggesting that the difference between them is significant.
<br>
<br>
<br>
<br>
 +
<center><img src="https://static.igem.org/mediawiki/2011/4/46/ThelWhole.png" width="400" />
 +
</center><br>
<p class="textojustif">
<p class="textojustif">
-
The Escherichia coli strain, Rosetta Gami, was choosen as a host for the chimeric protein because it has an improved folding system.
+
<small>Figure 2. Whole-Cell Cellulase Activity. The IUPAC Filter Paper Assay of celD+ estA and the Negative Control (C-). The glucose concentration in celD + estA strain was of 332.04 µM and in the Negative Control (C-) was of 275.85 µM.</small>
<br>
<br>
-
We used the IUPAC Filter Paper Assay, to determine the activity of the cellulase. This method is based in the reduction of the DNS, generating a proportional colorimetric concentration.
 
<br>
<br>
-
The assay was assest to the whole-cells, but also, we lysated the cells and separated them in two main fractions: soluble and insoluble. We were expecting more activity in the insoluble because our protein has a transmembranal domain.
 
-
<br>
 
-
The negative controls of the assay were non-transformed cells.
 
-
<br>
 
-
All samples were treated equally in the assay.
 
-
<br>
 
-
<p class="textojustif">
 
-
In the “ Whole-cell cellulase Activity” chart, is observed that there is a difference in the glucose concentration between the Negative Control cells (C-) and the CelD+ estA cells.
 
-
A t-student was done (sigma = 0.05) . The result was the rejection of the null hypothesis (Ho), this meant that the difference was significant.
 
<br>
<br>
-
<center><img src="https://static.igem.org/mediawiki/2011/f/f2/Graficathelma02.png"> </center>
 
-
<br><p class="textojustif">
+
<center>
-
In the “Cellulase Activity Cell Lysates” is analysed two fractions : Soluble ans Insoluble. As it can be seen, in both cases, there is a difference between the celD+estA cells and their respective Negative Controls (C-) . Also, it is noticed that there is a higher difference in the Insoluble fraction that in the Soluble one. A t-student was done (sigma = 0.05). The result was the rejection of the null hypothesis (Ho), this meant that the difference was significant.
+
<b>1.2.2. Cell-Lysate CelD+estA Activity </b></center>
<br>
<br>
-
 
-
<center><img src="https://static.igem.org/mediawiki/2011/e/e9/Grafica01thelma.png" alt="photo3" name="photo3" width="400" id="photo3"/></center>
 
<p class="textojustif">
<p class="textojustif">
-
Conclusions
+
In the cell-lysate cellulase activity assay (Figure 3) The glucose concentration in the soluble fraction of celD-estA was of 358 µM and in the Negative Control (C-) was of 323 µM.In the insoluble fraction, the glucose concentration  of the celD-estA was 374 µM and in the Negative Control (C-) it was 264 µM. The difference in soluble and insoluble fractions with its negative control was 35 µM while the difference in the insoluble fraction was 110 µM. The result of the t-test was the rejection of the null hyphothesis, suggesting that the difference between them is also significant.
<br>
<br>
-
• The difference in the glucose concentration between the celD+esta and their Negative Control (C-) were significant.
 
-
• The celD is ancher to the estA and it is active.<br>
 
-
• The activity in the Negative Control (C-) is due to the background signal.<br>
 
<br>
<br>
 +
<center><img src="https://static.igem.org/mediawiki/2011/f/fb/Thelsolinsol.png" alt="photo3" name="photo3" width="400" id="photo3"/></center>
<br>
<br>
-
Future Work
+
<p class="textojustif">
-
<br>
+
<small>Figure 3. Cellulase Activity of Cell lysates.The IUPAC Filter Paper Assay was assessed for the soluble and insoluble fraction of the celD+estA strain and the Negative Control (C-). The glucose concentration in the soluble fraction of celD-estA was 358 µM and in the Negative Control (C-) it was 323 µM.In the insoluble fraction, the glucose contentration of the celD-estA was 374 µM and in the Negative Control (C-) it was 264 µM.</small>
-
• Standarize all the variables of the UIPAC Filter Paper Assay and do more measurement with the samples.<br>
+
-
• Change the LB medium to a Basal medium like M9 medium.<br>
+
-
• Try another E. coli strain like XL1 Blue, C43, Bl21 SI and others<br>
+
-
• Assest others activity assays like Benedict Method and HPLC.<br>
+
-
<br>
 
-
<br>
 
<br>
<br>
<br>
<br>
-
<br><center><img src="https://static.igem.org/mediawiki/2011/1/1b/Results04.png">  
+
<br><center>  
-
<br> SacC Expression Results</center>
+
<br>
 +
<b>2.1. OmpA+sacC Construction</b>
 +
</center>
<br>
<br>
-
<br>
+
<p class="textojustif"> The final genetic construction for ompA + sacC was accomplished without the translation terminator sequence (<a href="http://partsregistry.org/Part:BBa_K633015">BBa_K633015</a>).  
-
<p class="textojustif"> The final genetic contrustion for ompA + sacC was accomplished without the translation terminator sequence (<a href="http://partsregistry.org/Part:BBa_K633015">BBa_K633015</a>).  
+
Approximately 3 kb of the linearized plasmid containing ompA + sacC was detected in all lanes and 1.25 kb of restriction fragment was visualized in the lane 6. (Figure 4)
-
Approximately 3 kb of the linealized plasmid ompA + sacC was detected in all lanes and 1.25 kb of restriction fragment was visualized in the lane 6. (Figure 5)
+
<br>
<br>
Line 710: Line 683:
<center>
<center>
-
     <p><img src="https://static.igem.org/mediawiki/2011/b/b0/Figure5.png" alt="photo3" name="photo3" width="350" id="photo3" /><br />
+
     <p><img src="https://static.igem.org/mediawiki/2011/b/b4/Agarose.png" alt="photo3" name="photo3" width="400" id="photo3" /><br />
       </p>
       </p>
</center>
</center>
<p class="textojustif">
<p class="textojustif">
-
Figure 5. 0.7% Agarose Gel.  
+
<small>Figure 4. 0.7% Agarose Gel.  
-
(Lane 1: Negative control (non-digested plasmid), 2: Linealized plasmid of ompA+sacC with EcoRI, 3: Linealized with XbaI, 4: 1kb DNA Ladder, 5: Linealized with SacI, 6: Digested with NheI, 7: Linealized with SpeI, 8: Linealized with PstI)
+
(Lane 1: Negative control (non-digested plasmid), 2: Linealized plasmid of ompA+sacC with EcoRI, 3: Linealized with XbaI, 4: 1kb DNA Ladder, 5: Linealized with SacI, 6: Digested with NheI, 7: Linealized with SpeI, 8: Linealized with PstI) </small>
</p>
</p>
<br>
<br>
<br>
<br>
-
<p class="textojustif"> A visible protein band of the expected molecular wight (62.8 kDa) of the fusion protein (ompA+sacC) could not be confirmed by SDS-PAGE (Figure 6). However, as Lee <i>et al.</i> (2004) have proven, the fusion protein could hardly be detected by Coomassie blue staining as its expression was below the detection level of the method used, our result may be due to the same reason.  
+
<br>
 +
<center>
 +
<b>2.2. OmpA+sacC Expression</b>
 +
</center>
 +
 
 +
<br>
 +
<p class="textojustif"> A visible protein band of the expected molecular wight (62.8 kDa) of the fusion protein (ompA+sacC) could not be confirmed by SDS-PAGE (Figure 5). However, as Lee <i>et al.</i> (2004) have proven, the fusion protein could hardly be detected by Coomassie blue staining as its expression was below the detection level of the method used. Our result may be due to the same reason.  
<br>
<br>
<br>
<br>
<center>
<center>
-
     <p><img src="https://static.igem.org/mediawiki/2011/f/f3/GelA.png" alt="photo3" name="photo3" width="400" id="photo3" /><br />
+
     <p><img src="https://static.igem.org/mediawiki/2011/b/ba/GelMin1.png" alt="photo3" name="photo3" width="400" id="photo3" />
-
<img src="https://static.igem.org/mediawiki/2011/f/fe/GelB.png" alt="photo3" name="photo3" width="400" id="photo3" />
+
 
 +
<img src="https://static.igem.org/mediawiki/2011/d/d1/GelMin2.png" alt="photo3" name="photo3" width="400" id="photo3" />
       </p>
       </p>
</center>
</center>
 +
<p class="textojustif">
<p class="textojustif">
-
Figure 6. Tris-Glycine SDS-Polyacrylamide Gel of ompA + sacC. Gel A visualizes the 1D protein profiles of the soluble and insoluble fractions of XL1 Blue Wild Type (lane 2, 3), induced XL1 Blue + ompA + sacC plasmid (lane 4, 5) and non-induced XL1 Blue + ompA + sacC (lane 6, 7), the soluble and insoluble fractions of Rosetta Gami Wild Type (lane 8, 9), non-induced Rosetta Gami + ompA + sacC plasmid (lane 10, 11) and induced Rosetta Gami + ompA + sacC (lane 12, 13), and the soluble and insoluble fractions of induced BW27783 + ompA + sacC (lane 14, 15). Gel B shows the 1D protein profiles of the soluble and insoluble fractions of induced BW27783 + ompA + sacC (lane 1, 2), the soluble and insoluble fractions of BL21 SI wild type (lane 4, 5), non-induced BL21 SI + ompA + sacC (lane 6, 7), and induced BL21 SI + ompA + sacC (lane 8, 9), the soluble and insoluble fractions of C43 wild type (lane 10, 11), non-induced C43 + ompA + sacC (lane 12, 13), and induced C43 + ompA + sacC (lane 14, 15).
+
<small>Figure 5. Tris-Glycine SDS-Polyacrylamide Gel of ompA + sacC. Gel A visualizes the 1D protein profiles of the soluble and insoluble fractions of XL1 Blue Wild Type (lane 2, 3), induced XL1 Blue + ompA + sacC plasmid (lane 4, 5) and non-induced XL1 Blue + ompA + sacC (lane 6, 7), the soluble and insoluble fractions of Rosetta Gami Wild Type (lane 8, 9), non-induced Rosetta Gami + ompA + sacC plasmid (lane 10, 11) and induced Rosetta Gami + ompA + sacC (lane 12, 13), and the soluble and insoluble fractions of induced BW27783 + ompA + sacC (lane 14, 15). Gel B shows the 1D protein profiles of the soluble and insoluble fractions of induced BW27783 + ompA + sacC (lane 1, 2), the soluble and insoluble fractions of BL21 SI wild type (lane 4, 5), non-induced BL21 SI + ompA + sacC (lane 6, 7), and induced BL21 SI + ompA + sacC (lane 8, 9), the soluble and insoluble fractions of C43 wild type (lane 10, 11), non-induced C43 + ompA + sacC (lane 12, 13), and induced C43 + ompA + sacC (lane 14, 15). </small>
</p>
</p>
<br>
<br>
Line 737: Line 718:
<br>
<br>
<br>
<br>
-
<center><img src="https://static.igem.org/mediawiki/2011/4/40/Results03.png">
+
 
-
<br>SacC is active in whole cell assays! </center>
+
<center>  
 +
<b>2.3. SacC is active in whole cell assays </b></center>
<br>
<br>
<br>
<br>
 +
<p class="textojustif">
<p class="textojustif">
-
Whole cells of the <i>E. coli</i> strain (BL21SI) +sacC+ompA produced a fructose concentration of 350.71±60.97 uM which is 149.36 uM higher than the negative control cells (Figure 7), a T-test with 2 tails and alpha value of 0.05 was carried out, and the null hypothesis of  "the population means are the same" was rejected, indicating that there is difference between the fructose concentration in the control strain and those of the sample strains. And although further investigation is required, the evidence we have is a strong indicator that the enzyme is active in the outer membrane of <i>E. coli</i>.  
+
Whole cells of the <i>E. coli</i> strain (BL21SI) +sacC+ompA produced a fructose concentration of 350.71±60.97 µM which is 149.36 µM higher than the negative control cells (Figure 6). A T-test with 2 tails and alpha value of 0.05 was carried out, and the null hypothesis of  "the population means are the same" was rejected, indicating that there is a difference between the fructose concentration in the control strain and those of the sample strains. And although further investigation is required, the evidence we have is a strong indicator that the enzyme is active in the outer membrane of <i>E. coli</i>.  
<br>
<br>
<br>
<br>
-
<center><img src="https://static.igem.org/mediawiki/2011/c/cf/Graficamin03.png"><br>
+
<center><img src="https://static.igem.org/mediawiki/2011/c/cf/Graficamin03.png" width="400" /><br>
</center>
</center>
<p class="textojustif">
<p class="textojustif">
-
Figure 7. SacC Activity Assay Graph. Each bar indicates the fructose concentration generated by the sacC activity of non-transformed BL21 SI (left) and those of the BL21 SI + ompA + sacC plasmid.
+
<small>Figure 6. SacC Activity Assay Graph. Each bar indicates the fructose concentration generated by the sacC activity of non-transformed BL21 SI (left) and those of the BL21 SI + ompA + sacC plasmid.</small>
</p>
</p>
Line 756: Line 739:
<br>
<br>
<p class="textojustif">
<p class="textojustif">
-
Further research will be focused on SDS-PAGE with a more efficient staining/blotting technique, expression of sacC fusing it with estA protein fragments, and more sacC enzymatic assays.
+
Further research will be focused on SDS-PAGE with a more efficient staining/blotting technique, expression of sacC fused to estA protein fragments, and more sacC enzymatic assays.
</p>
</p>
Line 765: Line 748:
<br>
<br>
  <p class="textojustif"> • Lee SH, Choi JI, Park SJ, Lee SY & Park BC (2004) Display of Bacterial Lipase on the <i>Escherichia coli </i> Cell Surface by Using FadL as an Anchoring Motif and Use of the Enzyme in Enantioselective Biocatalysis. Applied and Environmental Microbiology. Vol.70(9):5074–5080.
  <p class="textojustif"> • Lee SH, Choi JI, Park SJ, Lee SY & Park BC (2004) Display of Bacterial Lipase on the <i>Escherichia coli </i> Cell Surface by Using FadL as an Anchoring Motif and Use of the Enzyme in Enantioselective Biocatalysis. Applied and Environmental Microbiology. Vol.70(9):5074–5080.
 +
<br>
 +
• Schägger, H., & Gebhard, v. J. (1991). Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Analytical Biochemistry , 199 (2), 223-231.
 +
 +
<br>
<br>

Latest revision as of 21:16, 20 October 2011

wiki

iGEM