Team:SJTU-BioX-Shanghai

From 2011.igem.org

Revision as of 02:40, 29 October 2011 by Pony (Talk | contribs)

  • Countdown

    Visitors

    Locations of visitors to this page

    Sponsors

    Merck millipore
    Merck Millipore
    Shanghai Jiao Tong University
    Shanghai Jiao Tong University
    Bio-X Institutes
    Bio-X Institutes
    GenScript
    GenScript
    The Project: Codon Switch Controlling Protein Biosynthesis

    SJTU-BioX-Shanghai iGEM team is designing a set of Codon-Switches that regulate target protein biosynthesis (translation).

    In our Rare-Codon Switch, the translation of the protein can be finely turned up/down with the control of rare tRNA amount, aaRS that charges the rare tRNA and rare codons.

    Besides, our device can be made into switches that can be turned on/off without background noise in two ways. One is to use stop codon as the controlling element, the Stop-Codon Switch. The other is to use any codon but the original start codon to initiate translation, the Initial-Codon Switch.

    Project

    Our design has expanded the regulating tools for synthetic biology and introduced brand-new methods for protein function analysis. See more about project applications, click here.

    Team
    Parts
    Human practice
    Achievements

    right Gold Medal and Best New BioBrick Part or Device, Engineered: BBa_K567011 & BBa_K567012 at Asia Jamboree. Advancing to World Champion!

    right Constructed three Codon Switches that controls protein biosynthesis, Rare-Codon Switch, Stop-Codon Switch and Initial-Codon Switch.

    right Used Rare-Codon Switch to turn up/down protein biosynthesis by controlling rare tRNA amount, aaRS and the number of rare codons.

    right Built our Rare-Codon Switch in silic and demonstrated the reliability of the model through our experiment results.

    rightConstructed two strict switches, Stop-Codon Switch and Initial-Codon Switch, that can turn on/off protein biosynthesis.

    rightConstructed 21 biobricks in our 3 sub-projects

    rightAnalysed the structures of 18 aaRS with structural biological methods. Designed structures of 14 modified aaRS deprived of their anticodon recognition ability.

    rightExpanded the regulating tools for synthetic biology and developed two brand-new ways that facilitate the study of protein function.

    rightPromoted synthetic biology in high school class. Designed a questionnaire and did a survey on high school students’ understandings and attitudes towards synthetic biology.