Team:Peking S/project

From 2011.igem.org

(Difference between revisions)
Line 2: Line 2:
{{https://2011.igem.org/Team:Peking_S/bannerhidden}}
{{https://2011.igem.org/Team:Peking_S/bannerhidden}}
{{https://2011.igem.org/Team:Peking_S/back2}}
{{https://2011.igem.org/Team:Peking_S/back2}}
-
{{https://2011.igem.org/Team:Peking_S/title}}
+
{{Template:Http://2011.igem.org/Team:Peking_S/box4project}}
-
<html>
 
-
<head>
 
-
<title>Untitled</title>
 
-
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
 
-
<meta name="generator" content="Web Page Maker">
 
-
<style type="text/css">
 
-
/*----------Text Styles----------*/
 
-
.ws6 {font-size: 8px;}
 
-
.ws7 {font-size: 9.3px;}
 
-
.ws8 {font-size: 11px;}
 
-
.ws9 {font-size: 12px;}
 
-
.ws10 {font-size: 13px;}
 
-
.ws11 {font-size: 15px;}
 
-
.ws12 {font-size: 16px;}
 
-
.ws14 {font-size: 19px;}
 
-
.ws16 {font-size: 21px;}
 
-
.ws18 {font-size: 24px;}
 
-
.ws20 {font-size: 27px;}
 
-
.ws22 {font-size: 29px;}
 
-
.ws24 {font-size: 32px;}
 
-
.ws26 {font-size: 35px;}
 
-
.ws28 {font-size: 37px;}
 
-
.ws36 {font-size: 48px;}
 
-
.ws48 {font-size: 64px;}
 
-
.ws72 {font-size: 96px;}
 
-
.wpmd {font-size: 13px;font-family: 'Arial';font-style: normal;font-weight: normal;}
 
-
/*----------Para Styles----------*/
 
-
DIV,UL,OL /* Left */
 
-
{
 
-
margin-top: 0px;
 
-
margin-bottom: 0px;
 
-
}
 
-
</style>
 
-
<script src="ac_activex.js" type="text/javascript"></script>
 
-
<script language="JavaScript1.4" type="text/javascript">
+
==<font color="#ffffff"> '''Project Description''' </font>==
-
<!--
 
-
function jsPlay(soundobj) {
 
-
var thissound= eval("document."+soundobj);
 
-
try {
 
-
    thissound.Play();
 
-
}
 
-
catch (e) {
 
-
    thissound.DoPlay();
 
-
}
 
-
}
 
-
//-->
 
-
</script>
 
-
<script language="javascript" type="text/javascript">
 
-
<!--
 
-
function MM_swapImgRestore() {
 
-
  var i,x,a=document.MM_sr; for(i=0;a&&i<a.length&&(x=a[i])&&x.oSrc;i++) x.src=x.oSrc;
 
-
}
 
-
function MM_preloadImages() {
 
-
  var d=document; if(d.images){ if(!d.MM_p) d.MM_p=new Array();
 
-
    var i,j=d.MM_p.length,a=MM_preloadImages.arguments; for(i=0; i<a.length; i++)
 
-
    if (a[i].indexOf("#")!=0){ d.MM_p[j]=new Image; d.MM_p[j++].src=a[i];}}
 
-
}
 
-
function MM_findObj(n, d) {
+
{{Template:Http://2011.igem.org/Team:Peking S/imagebox|image=Pkus2011projectdes1.jpg|caption=design of our logic gate}}
-
  var p,i,x;  if(!d) d=document; if((p=n.indexOf("?"))>0&&parent.frames.length) {
+
'''Cell-cell communication-based multicellular networks provide an extended vista for synthetic biology'''. By compartmentalizing complex genetic circuits into separate engineered cells, the difficulty of the construction by layering elementary gates can be dramatically reduced, partly due to the insulation of crosstalk between modules, the suppression of noise by populationally averaging, and the reducing of metabolic burden in host cells. What’s more, cell-cell communication-based multicellular feature enables coordination and synchronization among cells in and between populations and facilitates the generation of reliable non-Boolean dynamics.  
-
    d=parent.frames[n.substring(p+1)].document; n=n.substring(0,p);}
+
-
  if(!(x=d[n])&&d.all) x=d.all[n]; for (i=0;!x&&i<d.forms.length;i++) x=d.forms[i][n];
+
-
  for(i=0;!x&&d.layers&&i<d.layers.length;i++) x=MM_findObj(n,d.layers[i].document);
+
-
  if(!x && d.getElementById) x=d.getElementById(n); return x;
+
-
}
+
-
function MM_swapImage() {
 
-
  var i,j=0,x,a=MM_swapImage.arguments; document.MM_sr=new Array; for(i=0;i<(a.length-2);i+=3)
 
-
  if ((x=MM_findObj(a[i]))!=null){document.MM_sr[j++]=x; if(!x.oSrc) x.oSrc=x.src; x.src=a[i+2];}
 
-
}
 
-
//-->
 
-
</script>
 
-
</head>
 
-
<body>
+
{{Template:Http://2011.igem.org/Team:Peking S/imagebox|image=Pkus2011projectdes2.jpg|caption=competiter}}
-
<img src="https://static.igem.org/mediawiki/2011/2/29/2011pkushomepageback.jpg" width="970" height="1900" align="right" z-index:-1>
+
However, orthogonal ‘chemical wires’ that allow concurrent communication are far from sufficient. Accordingly, '''our project intends to develop a versatile ‘chemical wire’ toolbox for both multicellular Boolean computing and non-Boolean dynamics.''' Criteria and assays for ‘chemical wire’ characterization and validation have been established, in which the orthogonality, the speed of signal relaying and the ability to coordinate cells are verified. A set of recently reported quorum sensing systems have been selected, together with previously investigated AHL system, as ‘chemical wire’ toolbox. With this toolbox, multicellular design principles for complex logic circuit that allow a reduction in the complexity and a guarantee in both robust function and operation speed of a system will be proposed, followed by constructing reusable E.coli cell types that each compartmentalizes specific elementary logic gate in a single cell, connected by ‘chemical wires’. By layering a very few number of such cellular logic gates, complex logic computing process will be easily implemented. Besides, a queen-worker-interaction based cell density oscillator will be constructed, in order to verify the feasibility of our ‘chemical wire’ toolkit for non-Boolean dynamic functions. Nonetheless, challenges remain for this non-Boolean process because communication signals are produced by growing cells, i.e. changes in cell densities may affect the strength of communication. To crack these hurdles, we will develop a microfluidic device that imposes constraints on cell densities and on the flow of chemical signals to guarantee well-coordinated population dynamics.
-
<div id="text1" style="position:absolute; overflow:hidden; left:230px; top:565px; width:580px; height:245px; z-index:1">
+
-
  <div class="wpmd">
+
-
<div align=center><font face="Eras Demi ITC" class="ws11">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Cell-cell communication-based multicellular networks provide an extended vista for synthetic biology. By compartmentalizing complex genetic circuits into separate engineered cells, the difficulty of the construction by layering elementary logic gates can be dramatically reduced, partly due to the insulation of crosstalk between modules, the suppression of noise by populationally averaging, and the reducing of metabolic burden in host cells. What&#8217;s more, cell-cell communication-based multicellular feature also enables coordination and synchronization among cells in and between populations and facilitates the generation of reliable non-Boolean dynamics.</font></div>
+
-
</div></div>
+
<html>
-
 
-
 
-
 
-
 
-
 
-
<div id="rollimg1" style="position:absolute; overflow:hidden; left:200px; top:1870px; width:212px; height:70px; z-index:3">
 
-
<a onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('rollimg1','','https://static.igem.org/mediawiki/2011/8/84/Pkus2011rollingMORE2.png',1)" href="httP://2011.igem.org/Team:Peking_S/team/gallery">
 
-
<img name="rollimg1" onLoad="MM_preloadImages('https://static.igem.org/mediawiki/2011/8/84/Pkus2011rollingMORE2.png')" width=212 height=57 alt="" title="" border=0 src="https://static.igem.org/mediawiki/2011/e/e3/Pkus2011rollingMORE1.png">
 
-
</a></div>
 
-
 
-
<div id="rollimg2" style="position:absolute; overflow:hidden; left:380px; top:750px; width:174px; height:47px; z-index:4">
 
-
<a onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('rollimg2','','https://static.igem.org/mediawiki/2011/8/84/Pkus2011rollingMORE2.png',1)" href="HTTP://2011.igem.org/Team:Peking_S/project/description">
 
-
<img name="rollimg2" onLoad="MM_preloadImages('https://static.igem.org/mediawiki/2011/8/84/Pkus2011rollingMORE2.png')" width=174 height=47 alt="" title="" border=0 src="https://static.igem.org/mediawiki/2011/e/e3/Pkus2011rollingMORE1.png">
 
-
</a></div>
 
-
 
-
<div id="image2" style="position:absolute; overflow:hidden; left:103px; top:2097px; width:242px; height:50px; z-index:5"><a href="http://www.chem.pku.edu.cn/index.php?styleid=2"><img src="https://static.igem.org/mediawiki/2011/e/e3/PekingR_COLLEGE_OF_CHEMISTRY_AND_MOLECULAR_ENGINEERING.png" alt="" title="" border=0 width=280 height=50></div>
 
-
 
-
<div id="image3" style="position:absolute; overflow:hidden; left:380px; top:2023px; width:294px; height:53px; z-index:6"><a href="http://ctb.pku.edu.cn/main/en/index.htm"><img src="https://static.igem.org/mediawiki/2011/8/8e/PekingR_PKU_CTB.gif"  alt="" title="" border=0 width=250 height=53></div>
 
-
 
-
<div id="image4" style="position:absolute; overflow:hidden; left:103px; top:2162px; width:280px; height:55px; z-index:7"><a href="http://dean.pku.edu.cn/"><img src="https://static.igem.org/mediawiki/2011/2/20/PekingR_PKU_OFFICE_OF_EDUCATIONAL_ADMINISTRATION_%281%29.png" alt="" title="" border=0 width=280 height=55></div>
 
-
 
-
<div id="image5" style="position:absolute; overflow:hidden; left:103px; top:2025px; width:233px; height:51px; z-index:8"><a href="http://www.bio.pku.edu.cn/english/"><img src="https://static.igem.org/mediawiki/2011/7/72/PekingR_PKU_SCHOOL_OF_LIFE_SCIENCE.png" alt="" title="" border=0 width=233 height=51></div>
 
-
 
-
<div id="image7" style="position:absolute; overflow:hidden; left:380px; top:2100px; width:240px; height:51px; z-index:24"><a href="http://www.beijinglab.com.cn/"><img src="https://static.igem.org/mediawiki/2011/e/ec/PekingR_beijinglihua.jpg"  alt="" title="" border=0 width=240 height=51></div>
 
-
 
-
<div id="image8" style="position:absolute; overflow:hidden; left:200px; top:920px; width:560px; height:181px; z-index:100"><img src="https://static.igem.org/mediawiki/2011/9/99/PkushomeproAll2.png" width="570" height="181" border="0" usemap="#Map" />
 
-
<map name="Map" id="Map">
 
-
  <area shape="rect" coords="8,4,157,195" href="https://2011.igem.org/Team:Peking_S/project/gate" alt="logic gate" />
 
-
  <area shape="rect" coords="173,6,349,180" href="https://2011.igem.org/Team:Peking_S/project/wire" alt="chemical wires"/>
 
-
  <area shape="rect" coords="365,6,543,180" href="https://2011.igem.org/Team:Peking_S/project/consortia" alt="consortia"/>
 
-
</map>
 
</div>
</div>
-
 
+
<br><br>
-
 
+
<b class="rbottom"><b class="r4"></b><b class="r3"></b><b class="r2"></b><b class="r1"></b></b>
-
 
+
-
<div id="image6" style="position:absolute; overflow:hidden; left:700px; top:2100px; width:200px; height:200px; z-index:22"><a href=#top><img src="https://static.igem.org/mediawiki/2011/3/3e/2011pkustopbutton.png" alt="" title="" border=0 width=200 height=200></div>
+
-
 
+
-
<div id="backtoigem2011" style="position:absolute; overflow:hidden; left:600px; top:370px; width:200px; height:200px; z-index:23"><a href=https://2011.igem.org><img src="https://static.igem.org/mediawiki/2011/8/87/Pkus2011igemLOGO.png" alt="" title="" border=0 width=200 height=200></div>
+
-
 
+
-
<div id="back" style="position:absolute; overflow:hidden; left:775px; top:370px; width:200px; height:200px; z-index:23"><img src="https://static.igem.org/mediawiki/2011/b/ba/2011pkusBack.png" alt="" title="" border=0 width=200 height=200></div></a>
+
-
 
+
-
 
+
-
 
+
-
</body>
+
-
 
+
-
 
+
-
</html>
+
-
 
+
-
 
+
-
<html xmlns="http://www.w3.org/1999/xhtml">
+
-
<head>
+
-
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+
-
<title>无标题文档</title>
+
-
<style type="text/css">
+
-
#apDiv1 {
+
-
position:absolute;
+
-
width:200px;
+
-
height:200px;
+
-
z-index:20;
+
-
left: 60px;
+
-
top: 1610px;
+
-
}
+
-
</style>
+
-
 
+
-
</head>
+
-
 
+
-
<body>
+
-
<div id="apDiv1">
+
-
  <object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=7,0,19,0" width="360" height="270" align="middle"  title="b">
+
-
  <param name="movie" value="https://static.igem.org/mediawiki/2011/c/c4/Pkus2011galleryflash.swf" />
+
-
  <param name="quality" value="high" />
+
-
  <embed src="https://static.igem.org/mediawiki/2011/c/c4/Pkus2011galleryflash.swf" quality="high" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" width="360" height="270"></embed>
+
-
  </object>
+
</div>
</div>
-
<script type="text/javascript">
 
-
swfobject.registerObject("FlashID");
 
-
</script>
 
</body>
</body>
</html>
</html>

Revision as of 06:32, 10 August 2011

Template:Https://2011.igem.org/Team:Peking S/bannerhidden Template:Https://2011.igem.org/Team:Peking S/back2

Template:Https://2011.igem.org/Team:Peking S/bannerhidden

css r corner




Project Description

Pkus2011projectdes1.jpg

design of our logic gate

Cell-cell communication-based multicellular networks provide an extended vista for synthetic biology. By compartmentalizing complex genetic circuits into separate engineered cells, the difficulty of the construction by layering elementary gates can be dramatically reduced, partly due to the insulation of crosstalk between modules, the suppression of noise by populationally averaging, and the reducing of metabolic burden in host cells. What’s more, cell-cell communication-based multicellular feature enables coordination and synchronization among cells in and between populations and facilitates the generation of reliable non-Boolean dynamics.



Pkus2011projectdes2.jpg

competiter

However, orthogonal ‘chemical wires’ that allow concurrent communication are far from sufficient. Accordingly, our project intends to develop a versatile ‘chemical wire’ toolbox for both multicellular Boolean computing and non-Boolean dynamics. Criteria and assays for ‘chemical wire’ characterization and validation have been established, in which the orthogonality, the speed of signal relaying and the ability to coordinate cells are verified. A set of recently reported quorum sensing systems have been selected, together with previously investigated AHL system, as ‘chemical wire’ toolbox. With this toolbox, multicellular design principles for complex logic circuit that allow a reduction in the complexity and a guarantee in both robust function and operation speed of a system will be proposed, followed by constructing reusable E.coli cell types that each compartmentalizes specific elementary logic gate in a single cell, connected by ‘chemical wires’. By layering a very few number of such cellular logic gates, complex logic computing process will be easily implemented. Besides, a queen-worker-interaction based cell density oscillator will be constructed, in order to verify the feasibility of our ‘chemical wire’ toolkit for non-Boolean dynamic functions. Nonetheless, challenges remain for this non-Boolean process because communication signals are produced by growing cells, i.e. changes in cell densities may affect the strength of communication. To crack these hurdles, we will develop a microfluidic device that imposes constraints on cell densities and on the flow of chemical signals to guarantee well-coordinated population dynamics.