Team:Gaston Day School/Project

From 2011.igem.org

(Difference between revisions)
Line 62: Line 62:
=== The Experiments ===
=== The Experiments ===
-
File:nrfptestGDS.jpg|200px
+
[[Image:nrfptestGDS.jpg|500px]]
-
Image:nrfptestGDS.jpg
+
-
[[Image:nrfptestGDS.jpg]]
+
=== Part 3 ===
=== Part 3 ===

Revision as of 21:03, 26 September 2011

Gds_banner.png

Home Team Official Team Profile Project Parts Submitted to the Registry Modeling Notebook Safety Attributions


You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing.
Gaston Day School logo.png

Tell us more about your project. Give us background. Use this is the abstract of your project. Be descriptive but concise (1-2 paragraphs)

Team Example



Contents

Overall project

Gaston Day School’s iGEM project for 2011 has two distinct but complementary parts. First, we plan to build a functional nitrate detector using RFP. Red Fluorescent Protein has one distinct advantage over the more traditional Green Fluorescent Protein; it is visible without any special equipment. Our goal is to have a detector that is easy for anyone to use in the field. Most people, including farmers and ranchers, who would need to detect nitrogen pollution will not have a pocket UV light! We envision a kit that could be used to determine if the runoff of a particular farm was high in nitrogen. The kit will include all necessary components for running the test and then decontaminating the resulting growth to prevent release of the engineered bacteria into the environment.

The second part of our project involves a close look at the actual risks of accidental release of the engineered bacteria into the environment. Many groups, including ours, have proposed and built environmental detectors of various sorts. Often, these detectors come with sophisticated mechanisms for preventing the release or for preventing the bacteria from growing if released. We would like to include a very simple mechanism for killing or denaturing the bacteria in our detector kit – bleach. Bleach is highly effective at killing bacteria and is readily available to the average person. Even if we include the bleach in the kit, we realize that many people do not (or will not) read and follow directions. We plan to simulate a variety of conditions under which our detector could be introduced into the environment, ranging from simply dumping it in the sink to pouring it into the local creek or soil. By producing survivorship curves, we can estimate the real risk of spreading the recombinant bacteria into the environment.




Project Details

Part 2

The Experiments

NrfptestGDS.jpg

Part 3

Results