Team:Freiburg/Description

From 2011.igem.org

(Difference between revisions)
(Bacterial artificial chromosome)
(Bacterial artificial chromosome)
Line 259: Line 259:
Bacterial artificial chromosome (BAC) is a vector based on the single copy plasmid F-factor from ''Escherichia coli'', which can host inserts from bacteria or other sources between 150 and 350 kilo base pairs (kbp) but up to 700 kbp, and hold them for more then 100 generations. The BAC vector has some common gene components that are: the oriS and repE which are responsible for the not bidirectional replication. The parA and parB genes control the copy number of the BAC. In addition there is a selection marker commonly an antibiotic resistance and finally the cloning segment with the restriction sites. This cloning segment will be flanked by a T7 and SP6 promoter. Usually BACs are used to build up libraries or genetically screening, through its stability.
Bacterial artificial chromosome (BAC) is a vector based on the single copy plasmid F-factor from ''Escherichia coli'', which can host inserts from bacteria or other sources between 150 and 350 kilo base pairs (kbp) but up to 700 kbp, and hold them for more then 100 generations. The BAC vector has some common gene components that are: the oriS and repE which are responsible for the not bidirectional replication. The parA and parB genes control the copy number of the BAC. In addition there is a selection marker commonly an antibiotic resistance and finally the cloning segment with the restriction sites. This cloning segment will be flanked by a T7 and SP6 promoter. Usually BACs are used to build up libraries or genetically screening, through its stability.
<br/>
<br/>
-
We want to put most of our parts in a BAC so it can be used as a “Lab in a cell” system.<br/> This is very easy to handle and is a persistent transformation. Combined with our BAC vector we also have a transient plasmid with promoters for the expression of the His-tagged protein you want to purify. This protein can be cloned after these promoters and can be expressed with the influence of light (for example blue light). With this single cloning step, you can express your protein of interest. With the Bac vector all the other proteins are expressed dependent on the light exposure and heat.
+
We want to put most of our parts in a BAC so it can be used as a “Lab in a cell” system.<br/> This is very easy to handle and is a persistent transformation. Combined with our BAC vector we also have a transient plasmid with promoters for the expression of the His-tagged protein you want to purify. This protein can be cloned after these promoters and can be expressed with the influence of light (for example blue light). With this single cloning step, you can express your protein of interest. With the BAC vector all the other proteins are expressed dependent on light exposure and heat.
[[File:Freiburg2011_BAC.jpg|500px]]
[[File:Freiburg2011_BAC.jpg|500px]]

Revision as of 02:55, 22 September 2011


This is the wiki page
of the Freiburger student
team competing for iGEM 2011.
Thank you for your interest!