Summer events/2011 KAIST summercamp

From 2011.igem.org

Revision as of 10:07, 3 August 2011 by KwangR (Talk | contribs)

2011 KAIST iGEM summer camp

for middle&high school students, July 27-29, 2011

On noon of July 27th, a hundred middle and high school students gathered at the Creative Learning Building at KAIST to participate in the “experience science and engineering camp,” hosted by the Korean Ministry of Knowledge Economy. All participants were winners in the first stage of the inventor’s contest out of a total contestant pool of 2500.

Each student was given the opportunity to choose a project of his or her choice. For the remainder of the camp, the participants would follow the program planned by the teaching assistants of the project that they chose. The 2011 iGEM KAIST had prepared the project "I'm a Bio-Designer" in order to teach students fundamentals of synthetic biology. Nineteen students chose to participate in our project out of a total of five projects.



The program included the following activities:

- Lecture
- Laboratory
- Board game
- Student project presentation

LABORATORY

At 7:30 p.m., the students arrived at the sixth floor of the Gung-Ni Laboratory building. The entire floor was reserved for the purpose of giving the students a chance to experience synthetic biology in real-life.

After seating down in pairs of two, the students were given a lecture about the medium used to culture E. coli. We told them about the composition of the Luria-Bertani culture medium, as well as how it is prepared and sterilized in the autoclave. Then, they were given the chance to make the LB culture medium themselves. Following a simple protocol provided by us, the students, eagerness burning in their eyes, got to work. The instructions are reproduced below.

  1. Put 100 ml of distilled water into a 250 ml Erlenmeyer flask.
  2. Put 2.5 g of LB broth powder and 1.5 g of Agar into the flask.
  3. Put a magnetic bar into the flask and put the flask on top of the stirrer.
  4. Turn on the stirrer and raise the temperature. Thoroughly mix the contents within.
  5. Wait until the temperature of the contents within drops to 60 degrees Celsius.
  6. Pour about 30 ml of the solution onto the petri dish.

Each student was instructed to prepare two petri dishes with the LB culture medium.
In conducting biology experiments, researchers frequently have to wait long hours in between procedures. For this reason, students experiencing biology in the lab for the first time may get bored. So we devised a game to entertain the student in the meantime that the solution solidified. Each pair of students was given two pairs of latex gloves. In a relay, the student pair puts on and takes off the glove one after another. The student pair with the fastest record wins the game.

When the medium solidified, we let the students leave fingerprints on one of the petri dishes so that they could check how dirty their fingers are on the next day.

Before moving on to the remaining petri dish, we showed the students red fluorescent proteins in the darkroom to arouse their interests. We then explained the origins and mechanism of fluorescent proteins. Using diagrams of an E. coli and a vector, we explained that foreign genes are frequently introduced into the bacteria in order to give it new qualities, such as red fluorescence.

To give the students a chance to play with synthetic biology, we handed out a small painting brush and an Eppendorf tube full of E. coli expressing red fluorescent proteins. On the remaining petri dish, the students drew pictures using the brush soaked with red fluorescent proteins. The next day they would observe the resultant picture under the UV light. Both petri dishes were put in the incubator afterwards.

To summarize the events of the evening, the students got a chance to experience synthetic biology laboratory in real-life. They made the LB culture medium themselves, observed fluorescence emitted by red fluorescent proteins, and drew pictures using red fluorescent proteins.