1. FUNCTIONALITY

The AND-Gate takes a logical AND of phosphorelated OmpR and logical NOT YcgE. If INPUT1 is present tRNA is produced which is acetylated in another light-independent reaction. INPUT2 activates the transcription of T7RNA polymerase mRNA. The T7ptag gene that is used in this AND-Gate has two amber mutations. Thus only if both acetylated tRNA and the T7RNAP mRNA are present the mRNA can be translated into the protein.

2. Equations

$$tRNA \qquad \dot{x}_{1} = k_{t} \frac{\left(\frac{OmpR-P}{K1}\right)^{2}}{\left(1+\frac{OmpR-P}{K1}\right)^{2}} - (\gamma_{1}+k_{a})x_{1} + \gamma_{2p}x_{2} + 2k_{7p}x_{3}\left(\frac{\gamma_{3}}{k_{7m}}\right)\left(\frac{x_{1}}{\gamma_{0}+x_{1}}\right)^{2} Aa - tRNA \qquad \dot{x}_{2} = k_{a}x_{1} - 2k_{7p}x_{3}\left(\frac{\gamma_{3}}{k_{7m}}\right)\left(\frac{x_{1}}{\gamma_{0}+x_{1}}\right)^{2} - \gamma_{2}x_{2} T7RNAP_{mRNA} \qquad \dot{x}_{3} = k_{7m}\left(1 - \frac{\left(\frac{YcgE}{K3}\right)^{2}}{\left(1+\frac{YcgE}{K3}\right)^{2}}\right) - \gamma_{3}x_{3} T7RNAP \qquad \dot{x}_{4} = k_{7p}x_{3}\left(\frac{\gamma_{3}}{k_{7m}}\right)\left(\frac{x_{1}}{\gamma_{0}+x_{1}}\right)^{2} - \gamma_{4}x_{4} lacZ_{mRNA} \qquad \dot{x}_{5} = \alpha_{M}\left(1 - \frac{\left(\frac{x_{4}}{K5}\right)^{n_{l}}}{\left(1+\frac{x_{4}}{K5}\right)^{n_{l}}}\right) - \gamma_{M}x_{5} \beta - Galactosidase \qquad \dot{x}_{6} = \alpha_{B}x_{5} - \gamma_{B}x_{6} dye \qquad \dot{x}_{7} = \alpha_{A}x_{6}$$

3. PARAMETERS

Parameter	Value	Unit	Name	Source
k _t	$\frac{46.67}{60}$	$\frac{nM}{s}$	max transcription rate tRNA	PKU Beijing 2009
k_a	$\frac{0.08}{60}$	$\frac{1}{s}$	synthesis rate Aa-tRNA	PKU Beijing 2009
k_{7p}	$\frac{1.5625}{60}$	$\frac{nM}{s}$	max transcription rate T7RNAP	PKU Beijing 2009
k_{7m}	$\frac{268*0.05}{60}$	$\frac{1}{s}$	max translateion rate T7RNAP	PKU Beijing 2009
k_S	0.3	$\frac{1}{nM}$	AND Gate rate	PKU Beijing 2009
γ_0	1	-	threshold Aa-tRNA	guessed
γ_1	$\frac{1}{60*60}$	$\frac{1}{s}$	degradation of tRNA	PKU Beijing 2009
γ_2	$\frac{1}{40*60}$	$\frac{1}{s}$	degradation of Aa-tRNA	PKU Beijing 2009
γ_3	$\frac{1}{4.4*60}$	$\frac{1}{s}$	degradation of T7RNAP mRNA	PKU Beijing 2009
γ_4	$\frac{46.67}{40*60}$	$\frac{1}{s}$	degradation of T7RNAP	PKU Beijing 2009
<i>K</i> 1	5	nM	response param. OmpR-P,tRNA	guessed
K3	600	nM	response param. YcgE,T7RNAP	guessed
K5	$\frac{k7p}{4*gamma}$	nM	response param T7RNAP,lacZ	guessed

4. Reference

The model for our AND-Gate is based on the model of the iGEM team PKU Beijing 2009 for their AND-Gate1. We modified the equations such that the change in tRNA and Aa-tRNA does not include the degradation of the mRNA which caused negativity of some concentrations in our model.