We created a cellular, self-replicating purification device for His-tagged proteins. It is a completely artificially created fusion protein, which consists of a repeating LRRNT motif domain, coordinating Ni2+ Ions on its surface capped on N and C terminal end by hagfish sequence of a similar LRRNT motif. A second domain binds polystyrene surface. It is called the Precipitator.

The principal mechanism is comparable to Ni-NTA columns. Our Precipiator protein binds on the surface of the tube, presenting the chelated Nickel ions. Free binding sites of the Nickel ions are then exposed, so that a Histagged protein can attach to them. Cells expressing a His-tagged protein can be dissolved by the light inducible lysis device. Subsequently, when the lysate is taken up with a serological pipette coated with the Precipitator protein, the His-tagged proteins bind to it. Cell debris is then washed off, while the His-tagged protein stays and is eluted afterwards, in the same fashion as done in Ni-NTA columns with imidazole solutions, increasing in concentration. The His-tagged protein is finally captured in a distinct fraction.
nTLR4 LRR14 DLPSLEPLDLSRNGLSEKGCCSQSDE 396 mTLR4 LRR14 ALPSLSYLDLSRNALSFSGCCSYSDL 394 hTLR4 LRR15 GrTSLKYLDLLSFNGVITHSSNFL MTLRA LRR15 GTNSLRHLDLSFNGAITMSANFM HTLR4 LRR16 GLEQLEPDDROSNLKQMSEESVEL MTLR4 LRR16 GLEELOEDDFOHSTLKRVIEESAFL hTLR4 LRR17 SLRNLIYLDISTI彗RVAFNGIFN mTLR4 LRR17 hTLR4 LRR18 mTLR4 LRR18 nTLR4 LRR19 mTLR4 LRR19 hTLR4 LRR20 mTLR4 LRR20
hTLR4 LRR21 mTLR4 LRR21 HTLR4 LRR22
mTLR4 LRR22
nTLR4 LRRCT
mTLRA LRRCT CTCEHOSFLOWIKDQRQLIVEVERM CICEHOKPLONVKEOKOPLVNVECM
b

Prof. Martin Nickel Allergy - TLR4

- TLR-4 (3FXI) structure paper
- N -Terminal Hagfish 2 z 66
- C-Terminal Hagfish $2 z 62$
- LKELALDTNQLKSVPDGIFDR
- LTSLQKIWLHTNPWDCSCPRIDY
- LSRWLNKNSQKEQGSAKCSGSGKPVRSIICP
- LxxLxLxxNxLx Consensus

Bacterial LRR Consensus:

LxxLxLxxNxLxxLPxxLPxx

TLR4

LxxLxLxxNxLxxLxxxxFxxLxx

3cvr bacterial ligase

LEVLDADNNQLTSLPE.LPASL

FSELQLNRLNLSSLPDNLPPQ

ITVLEITQNALISLPELPAS

LEYLDACDNRLSTLPELPAS

LKHLDVDNNQLTXLPELPAL

LEYINADNNQLTXLPELPTS

LEVLSVRNNQLTFLPELPES

EIFFRCRENRITHIPENILSLDP

Extracted ideal consensus, by consensus sequence and 3d rational analysis:

LEVLDVSNNQLTSLPDNLPAS

Rational1:

LxALHCSxNxLxSLPxxLPxx LxHLACSxNxLxSLPxxLPxx

CPSRCSCSGTEIRCNSKGLTSVPTGIPSS

ATRLELESNKLQSLPDGVFDK

LTALHKSNNQLTSLPDNLPAS

LEHLAVSNNQLTSLPDNLPAS

LEALHVSNNQLTSLPDNLPAS

LEHLAVSNNQLTSLPDNLPAS

LEALHVSNNQLTSLPDNLPAS

LEHLAVSNNQLTSLPDNLPAS

LKELALDTNQLKSVPDGIFDR
LTSLQKIWLQTNPWDCSCPRIDY
LSRWLNKNSQKEQGSAKCSGSGKPVRSIICP

Rational2:

LxxLxCSxNHLHSLPxxLPxx

```
CPSRCSCSGTEIRCNSKGLTSVPTGIPSS
ATRLELESNKLQSLPHGVFDK
LTQLTKSNNHLHSLPDNLPAS
LEVLDVSNNHLHSLPDNLPAS
LEVLDVSNNHLHSLPDNLPAS
LEVLDVSNNHLHSLPDNLPAS
LEVLDVSNNHLHSLPDNLPAS
LEVLDVSNNHLHSLPDNLPAS
LKELALDTNQLKSVPDGIFDR
LTSLQKIWLHTNPWDCSCPRIDY
LSRWLNKNSQKEQGSAKCSGSGKPVRSIICP
```

Rational3:

LxxLxCSxNxLxSLPHHLPxx

CPSRCSCSGTEIRCNSKGLTSVPTGIPSS

ATRLELESNKLQSLPHGVFDK

LTQLTKSNNQLTSLPHHLPAS

LEVLDVSNNQLTSLPHHLPAS

LEVLDVSNNQLTSLPHHLPAS

```
LEVLDVSNNQLTSLPHHLPAS
```

LEVLDVSNNQLTSLPHHLPAS
LEVLDVSNNQLTSLPHHLPAS
LKELALDTNQLKSVPDGIFDR
LTSLQKIWLHTNPWDCSCPRIDY
LSRWLNKNSQKEQGSAKCSGSGKPVRSIICP

Rational4:

LxxLxCSxNxLxSLPxHLPHx

```
CPSRCSCSGTEIRCNSKGLTSVPTGIPSS
ATRLELESNKLQSLPHGVFDK
LTQLTKSNNQLTSLPDHLPHS
LEVLDVSNNQLTSLPDHLPHS
LEVLDVSNNQLTSLPDHLPHS
LEVLDVSNNQLTSLPDHLPHS
LEVLDVSNNQLTSLPDHLPHS
LEVLDVSNNQLTSLPDHLPHS
LKELALDTNQLKSVPDDGIFDR
LTSLQKIWLHTNPWDCSCPRIDY
LSRWLNKNSQKEQGSAKCSGSGKPVRSIICP
```

Rational5:

LHxLxCSxNxLxSLPxxLPxH

LHVLDVSNNQLTSLPDNLPAH

```
CPSRCSCSGTEIRCNSKGLTSVPTGIPSS
ATRLELESNKLQSLPHGVFDK
LHQLTKSNNQLTSLPDNLPAH
LHVLDVSNNQLTSLPDNLPAH
LHVLDVSNNQLTSLPDNLPAH
LHVLDVSNNQLTSLPDNLPAH
LHVLDVSNNQLTSLPDNLPAH
LHVLDVSNNQLTSLPDNLPAH
LKELALDTNQLKSVPDDGIFDR
LTSLQKIWLHTNPWDCSCPRIDY
LSRWLNKNSQKEQGSAKCSGSGKPVRSIICP
```

Rational6:

LHHLxCSxNxLxSLPxxLPxx

LHHLDVSNNQLTSLPDNLPAS

CPSRCSCSGTEIRCNSKGLTSVPTGIPSS

ATRLELESNKLQSLPHGVFDK

LHHLTKSNNQLTSLPDNLPAS

LHHLDVSNNQLTSLPDNLPAS

LHHLDVSNNQLTSLPDNLPAS

LHHLDVSNNQLTSLPDNLPAS

LHHLDVSNNQLTSLPDNLPAS

LHHLDVSNNQLTSLPDNLPAS

LHHLDVSNNQLTSLPDNLPAS

```
LKELALDTNQLKSVPDGIFDR
LTSLQKIWLHTNPWDCSCPRIDY
LSRWLNKNSQKEQGSAKCSGSGKPVRSIICP
```

After evaluating the C-Scores of I-TASSER we chose the three best results and reverse translated them, using http://www.bioinformatics.org/sms2/rev_trans.html

Rational1

$M W=27164.440000000006$

MCPSRCSCSGTEIRCNSKGLT
SVPTGIPSSATRLELESNKLQ
SLPDGVFDKLTALHKSNNQLT
SLPDNLPASLEHLAVSNNQLT
SLPDNLPASLEALHVSNNQLT
SLPDNLPASLEHLAVSNNQLT
SLPDNLPASLEALHVSNNQLT
SLPDNLPASLEHLAVSNNQLT
SLPDNLPASLKALHLDTNQLK
SVPDGIFDRLTSLQKIWLQTN
PWDCSCPRIDYLSRWLNKNSQ
KEQGSAKCSGSGKPVRSIICP

Results for 251 residue sequence "Untitled" starting "CPSRCSCSGT"
>reverse translation of Untitled to a 753 base sequence of most likely codons.

ATGtgcccgagccgttgcagctgtagcggcaccgaaattcgctgcaacagcaaaggcctgaccagcgtgccgaccggcattccgagcagcgcgacccgcctggaactggaaagca acaaactgcaaagcctgccggatggcgtgtttgataaactgaccgcgctgcataaaagcaacaaccagctgaccagcctgccggataacctgccggcgagcctggaacatctggcggt gagcaacaaccagctgaccagcctgccggataacctgccggcgagcctggaagcgctgcatgtgagcaacaaccagctgaccagcctgccggataacctgccggcgagcctggaa catctggcggtgagcaacaaccagctgaccagcctgccggataacctgccggcgagcctggaagcgctgcatgtgagcaacaaccagctgaccagcctgccggataacctgccggc gagcctggaacatctggcggtgagcaacaaccagctgaccagcctgccggataacctgccggcgagcctgaaagcgctgcatctggataccaaccagctgaaaagcgtgccggatg gcatttttgatcgcctgaccagcctgcaaaaaatttggctgcaaaccaacccgtgggattgcagctgcccgcgcattgattatctgagccgctggctgaacaaaaacagccagaaagaac agggcagcgcgaaatgcagcggcagcggcaaaccggtgcgcagcattatttgcccgTAGTAa

Tactagtagcggccgctgcag

Alignment of our reverse translated sequence and the one optimized by ATG:biosynthetics
$1>$ ATGtqcecgaqceqttqcaqctqtagcgqcaccqaaattcqctqcaacaqcaaaqqcetqaccagcqtqceqaccgqcattccgaqcagcqcgacceqce >100 1>ATGTGCCCGAGTCGTTGCAGTTGTTCAGGAACCGAAATTCGCTGCAATAGCAAAGGCTTGACCTCTGTGCCGACEGGATTCCAAGTTCAGCAACCCGTC>100
$101>t g q a a c t g q a a z g c a a c a a a c t g c a a a q c c t q c c g g a t q g c g t g t t t g a t a a a c t q a c c q c g c t q c a t a a a a q c a a c a a c c a q c t g a c c a g c c t g c c g q a>200$

\qquad *
*
*
*
*
*
$201>t a a c c t q c c q q c g a g c c t g g a a c a t c t g q c q g t q a g c a a c a a c c a g c t q a c c a g c c t g c c g g a t a a c c t q c c q g c g a q c e t g g a a g c g c t q c a t q t q a g c>300$ $201>$ CAATTGCCGGCGTCCCTCGAACACCTCGCGGTGAGTAACAATCABCTGACCTCGTTGCCTGATAACCTGCCGGCTAGCTTMGAAGCACTGCATGTGTCE >300
$301>$ aacaaccagctgaccaqcetgccggataacctgccggcgaqcetgqaacatctqqeggtgaqcaacaaccagctgaccagcctgccqgataacctqccqg>400

$501>g a c c a g c c t q c c q g a t a a c c t g c c g q c q a g c c t g a a z g c q c t g c a t c t q q a t a c c a a c c a q c t g a a a a q c q t q c e g q a t q q c a t t t t t q a t c q c e t q a c c>600$

 601 \rightarrow TCATTACA
$701>$ agqgeagcqcgaaatgcagcgqcagcqgcaaaccqqtgcqcagcattatttgcccqThGThaa >763 $701>A G G G C A G C G C A A A T G C T C T G G C T C C G G C A A A C C G G T B C G C T C E A T C A T T T G T C C G T A R T A A T>763$

Rational2:

MCPSRCSCSGTEIRCNSKGLT
SVPTGIPSSATRLELESNKLQ
SLPDGVFDKLTQLTKSNNHLH
SLPDNLPASLEVLDVSNNHLH
SLPDNLPASLEVLDVSNNHLH
SLPDNLPASLEVLDVSNNHLH
SLPDNLPASLEVLDVSNNHLH
SLPDNLPASLEVLDVSNNHLH
SLPDNLPASLKELALDTNHLH
SVPDGIFDRLTSLQKIWLQTN
PWDCSCPRIDYLSRWLNKNSQ
KEQGSAKCSGSGKPVRSIICP

Reverse Translate results

Results for 251 residue sequence "Untitled" starting "CPSRCSCSGT"
>reverse translation of Untitled to a 753 base sequence of most likely codons.

Gaattcgcggccgettctag
ATGtgcccgagccgttgcagctgtagcggcaccgaaattcgctgcaacagcaaaggcctgaccagcgtgccgaccggcattccgagcagcgcgacccgcctggaactggaaagca acaaactgcaaagcctgccggatggcgtgtttgataaactgacccagctgaccaaaagcaacaaccatctgcatagcctgccggataacctgccggcgagcctggaagtgctggatgtg agcaacaaccatctgcatagcctgccggataacctgccggcgagcctggaagtgctggatgtgagcaacaaccatctgcatagcctgccggataacctgccggcgagcctggaagtgc tggatgtgagcaacaaccatctgcatagcctgccggataacctgccggcgagcctggaagtgctggatgtgagcaacaaccatctgcatagcctgccggataacctgccggcgagcctg gaagtgctggatgtgagcaacaaccatctgcatagcctgccggataacctgccggcgagcctgaaagaactggcgctggataccaaccatctgcatagcgtgccggatggcatttttgat cgcctgaccagcctgcaaaaaaattggctgcaaaccaacccgtgggattgcagctgcccgcgcattgattatctgagccgctggctgaacaaaaacagccagaaagaacagggcagc gcgaaatgcagcggcagcggcaaaccggtgcgcagcattattgcccgTAGTAa
tactagtagcggccgctgcag

Alignment of our reverse translated sequence and the one optimized by ATG:biosynthetics:
 $101>$ TCGAECTTGAEAGCAATAAATTGCA
 $201>$ CAAMCTGCCAGCGTCTCTTGAAGTATTAGATGTGTCGAACAACCACCTCCACAGTTTGCCGGACAACTTACCGGCTAGCTTAGAAGTTCTGGATGTCTCT>300
$301>$ aacaaccatctgcatagcetgccggat aacetgccggcgagcctqgaaqtgctggatqtgagcaacaaccatct gcataqcetgccggataacctgccgg >400 $301>A$ TAACCATCTGCACTCCCTGCCAGACAACTTGCCTGCATCACTGGAAGTGCTCGATGTGAGTAACAATCATTTACACACTTTACCTGATAACCTGCCTG>400
 $401>C$ GAGCCTTGAAGTGCTTGACGTAAGCAATAACCATTTACATTCGTTACCTGATAATTTGCCCGCGAGCTTMGAAGTGTTAGACGTTAGTAACAATCACCT>500
$501>$ gcataqcetqceggataacctgccqqcgaqcetgaaagaactgqcgetggataccaaccatctqcatagcqtgrccgqatgqcatttttgatcqcetgacc>600

$601>a g c c t g c a a a a a a t t t q q c t g c a a a c c a a c c c q t q q q a t t q c a g c t q c c c g c q c a t t g a t t a t c t g a q c c q c t q q c t q a a c a a a a z c a g c c a g a a a g a a c>700$ 601>TCGTTACA

Rational4:

consensus
SLPxHLPHxLxxLxCSxNxLx

$M W=27844.059999999994$

MCPSRCSCSGTEIRCNSKGLT
SVPTGIPSSATRLELESNKLQ
SLPDGVFDKLTQLTKSNNQLT
SLPDHLPHSLEVLDVSNNQLT
SLPDHLPHSLEVLDVSNNQLT
SLPDHLPHSLEVLDVSNNQLT
SLPDHLPHSLEVLDVSNNQLT
SLPDHLPHSLEVLDVSNNQLT
SLPDHLPHSLKELALDTNQLK
SVPDHIFHRLTSLQKIWLQTN
PWDCSCPRIDYLSRWLNKNSQ

KEQGSAKCSGSGKPVRSIICP

Reverse translation, optimized codon usage for e.coli:

ATGtgcccgagccgttgcagctgtagcggcaccgaaattcgctgcaacagcaaaggcctgaccagcgtgccgaccggcattccgagcagcgcgacccgcctggaactggaaagca acaaactgcaaagcctgccggatggcgtgtttgataaactgacccagctgaccaaaagcaacaaccagctgaccagcctgccggatcatctgccgcatagcctggaagtgctggatgtg agcaacaaccagctgaccagcctgccggatcatctgccgcatagcctggaagtgctggatgtgagcaacaaccagctgaccagcctgccggatcatctgccgcatagcctggaagtgct ggatgtgagcaacaaccagctgaccagcctgccggatcatctgccgcatagcctggaagtgctggatgtgagcaacaaccagctgaccagcctgccggatcatctgccgcatagcctg gaagtgctggatgtgagcaacaaccagctgaccagcctgccggatcatctgccgcatagcctgaaagaactggcgctggataccaaccagctgaaaagcgtgccggatcatattttcat cgcctgaccagcctgcaaaaaatttggctgcaaaccaacccgtgggattgcagctgcccgcgcattgattatctgagccgctggctgaacaaaaacagccagaaagaacagggcagc gcgaaatgcagcggcagcggcaaaccggtgcgcagcattatttgcccgTAGTAa

ATG:biosynthetics optimization:

We submitted the DNA sequence to our sponsor. They kindly optimized us the sequence for secondary sturctures and RNA trafficking.

Alignment of our reverse translated sequence and the one optimized by ATG:biosynthetics:
$1>$ ATGtgccegagccqttqcaqctqtagcgqcaccqaaattcqctgcaacagcaaaqgcet gaccagcgtgccqaccqgcattccgaqcagcqcqacccqcc>100 1>ATGTGCCCTTCTCGTTGTAGCTGTTCAGGAACCGAAATTCGCTGTAATTCEAAAGGCTCACATCTGTTCCGACCGGEATTCCTAGCTCCGCGACTCGCT>100
$101>t g q a a c t q g a a z a g c a a c a a a c t g c a a a q c c t q c c g q a t q q c q t g t t t g a t a a a c t$ gacccaqctqaccaaaaqcaacaaccagctgaccagcctqcegqa>200

 $201>$ TCACCTTCCECATAGCTTAGAAGTATTGGATGTGAGCAACAATCAGCTGACATCTCTTCCTGACCATCTTCCGCATAGCCTCGAAGTTTTGGACGTCTCA>300
$301>$ aacaaccagctgaccagcetgccqgatcatctgccgcatagectggaaqt getqgatqt gagcaacaaccagct gaccagcctgccggatcatctgccgc >400 301>AATAACCACTTAACCTCATTACCGGATCATCTTCCACATTCGTTAGAAGTTCTGGATGTTTCEAACAACCAATTAACTTCACTTCCTGATCACCTGCCAC>400
$401 \times$ ataqcetqgaaqtgctggatqtgagcaacaaccagctgaccaqcctgccqgatcatctgccqcatagcctgqaaqtqctggatgtgagcaacaaccaqct>500

$701>$ aqgqcaqcgcgaaatgcaqcgqcagcqgcaaaccgqtgcqcagcattatttgcceqTACTAag>763

Sequenzen von ATG:

Alignment machen.

I-Tasser: Structure prediction

I-Tasser is a 3-dimensional protein prediction method which can be used via a downloadable program or a online server. It is provided by the Yang-Zhang lab of the University of Kansas. The community-wide Critical Assessment of Structure Prediction (CASP) ranked the I-Tasser as the best protein prediction method in the server section.

The method of the I-Tasser can be divided into 4 stages:
Stage 1 is called threading. In this stage the sequence or parts of the sequence or motifs are compared with already known protein structures to identify evolutionary relatives and predict secondary structures. This gives a sequence profile and together with the query sequence it is threaded by LOMETS, a server combining seven threading programs which evaluate the sequence respectively the templates with an individual score. The top templates are selected for further consideration.

Stage 2 is responsible for structural assembly. The structure is modeled ab initio by aligning different templates from the threading. This is a very complex process and different programs are involved.

Stage 3 is a model selection of the achievements of stage 2 with a following refinement of the predicted models.

Stage 4 announces the function of the predicted molecule by its structural conformation comparing with already known proteins of PDB database.

The predicted models are all evaluated by the C-Score, which assesses the quality of the

Figure 1 abstract of the I-Tasser method
prediction. It has a value from -5 to 2 ; the more positive the C -Score the merrier and more plausible the predicted structure is.

Lab in a Cell model

Experimental design:
The modeling was done in order to realize what parameters are crucial and which experiments need to be conducted to determine those.

Abbreviations:

Precipitator protein (P)
Column (C)
His-tagged Protein (H)

Assumptions:
[N] ∞
[I] ∞

If Nickel binds P or H the binding halftime ∞

Step 1

The Precipitator protein (P) binds the plastic column (C) by its plastic binding domain.

In reality the parameter "column" is not a soluble reagent, but the surface of the serological pipette that offers binding sites for the precipitator. We omitted the calculation for a surface reaction, since the simplified model is sufficient for our needs.

$$
\begin{gathered}
C+P{ }_{k_{0}}^{k_{1}} C P \\
\frac{d C P}{d t}=C P k_{1}-C P k_{0}=0 \\
{[C P]=C \quad P \frac{k_{1}}{k_{0}}}
\end{gathered}
$$

All loose P are washed away. k_{1} and k_{0} are further assumed as constant.

$$
\mathrm{dy} / \mathrm{dt}=\mathrm{cpk} 1-\mathrm{yk} 0
$$

c-c0=p-p0=y0-y
wir haben uns das Leben bloss nicht "Einfach" genug gemacht da y0=0, und dazu kommt dass man sagen kann das $\mathrm{p} 0=1$ ist (100% der säule frei)
dan haben wir die gleichung:
$\mathrm{dy} / \mathrm{dt}=(\mathrm{c} 0-\mathrm{y})(1-\mathrm{y}) \mathrm{k} 1-\mathrm{yk} 0=\mathrm{k} 1 \mathrm{y}^{\wedge} 2-(\mathrm{c} 0 * \mathrm{k} 1+\mathrm{k} 1+\mathrm{k} 0) \mathrm{y}+\mathrm{c} 0$
die Lösung dieser Gleichung ist zwar immer noch nicht einfach, aber sie hat 2 mögliche stable points wenn die Parameter "reasonable" sind. Daher wenn du eine value für c0 einsetzt und sagst das $\mathrm{y}(0)=0$, kriegest du eine Gleichung mit k1 und k 0 , also wenn du 2 Gleichungen mit 2 verschiedenen c0's hasst und die gemessene Proportion von der Säule die besetzt ist (dafür brauchst du die Sättigung Messung) kannst du k1 und k0 ausrechnen lassen...

Also theoretisch brauchst du 2 Messungen in dem Bereich wo der well noch nicht gesättigt ist und eine Messung mit der gesättigten Säule.

Step 2

The Precipitator has 3 different modi, depending on how many Nickel (between one and four are possible, depending on the precipitator version can bind. However, by adding a Nickel concentration much higher than protein concentration, it can be assumed, that all possible Nickel binding positions are occupied. Therefore we simplify the model assuming all positions are occupied and that there are no differences between the binding affinities in the 3 modi.

There is again a certain chance that the complex falls off the column. We further simplify the model by assuming that the on/off rates of the complex to the column remain the same although H is bound.

$$
\begin{gathered}
k_{2} \gg 1 \\
C P+N^{k_{2}} C P N_{k_{0}}^{k_{1}} C+P N \\
\frac{d C P N}{d t}=C P N k_{2}+C[P N] k_{0}-C P N k_{1}=0 \\
C P N=\frac{C P N k_{2}+C[P N] k_{0}}{k_{1}}
\end{gathered}
$$

All non-column bound complexes are washed off.

Step 3

The Precipitator in its three different modi binds His-tagged Protein (H).
There is a certain chance that the complex falls of the column.
We simplify the model by assuming that the k_{1} and k_{0} rates of the complex binding to the column remain the same although H is bound. In reality they probably did change due to the increased mass of the complex after the His-tagged protein is bound

$$
\begin{gathered}
C P N+H^{k_{5}} C P N H{ }_{k_{0}}^{k_{1}} C+P N H \\
\frac{d C P N H}{d t}=C P N H k_{5}+C[P N H] k_{0}-C P N H k_{1}=0 \\
C P N H=\frac{C P N H k_{5}+C[P N H] k_{0}}{k_{1}}
\end{gathered}
$$

All non-column bound complexes are washed off.

Step 4:
By adding Imidazole (I) all Nickel get solved from the complexes.

$$
\begin{gathered}
\text { CPNH }{ }^{k_{8}} C P+I N+H+C+P \\
\frac{d H}{d t}=C P N H \quad I k_{8} \\
H=\frac{[C P N H][I] k_{8}}{[C P][I N] k_{9}}
\end{gathered}
$$

All His-tagged Proteins are in solution now, purified from cell debris.

Conclusion:

1. To determine k_{1} and k_{0}, experiments to find out the binding affinity of the plastic binding domain are necessary. To get a direct access to these values, we planned to clone the plastic binding domain in front of a GFP. Then, dilution and washing assays are performed on polystyrene microtiter plates, red out by a fluorescence plate reader and thus, k_{1} and k_{0} can be calculated.
2. A qualitative experiment to prove that Nickel is binding the Precipitator is sufficient, since $k_{2} \gg 1$ and does not play a significant role in our setup. This experiment could be
3. In the end we want to give an estimate, how often one column can be reused until the efficiency goes too low.
4. We want to predict the amount of eluted His tagged protein depending on the size of the column.
5.
