
Theophylline riboswitch 1 datasheet

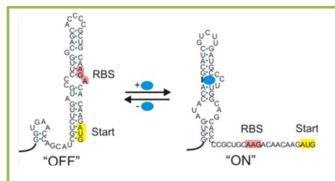


Figure 1. A diagram of theophylline riboswitch 1

In the absence of theophylline, the RBS is sequestered and downstream genes cannot be translated. Should theophylline interact with the riboswitch, a conformational change is ensued and the RBS is exposed resulting in the translation of downstream genes (Lynch and Gallivan, 2009)

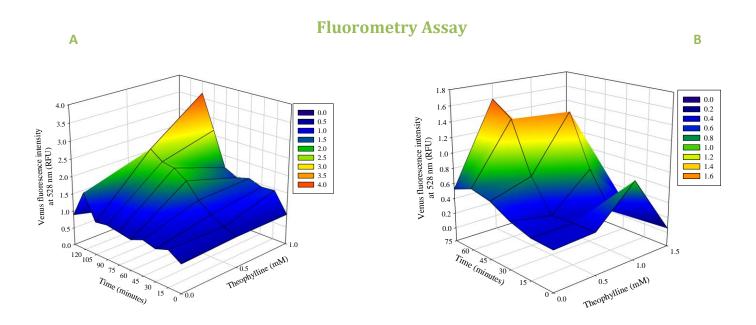


Figure 2: The fluorescence produced by Promoter-theophylline riboswitch 1-CheZ-Venus-double terminator (BBa_537011) (A) and Promoter-theophylline riboswitch 1-Venus-double terminator (BBa_537009) (B) at different theophylline concentrations over time. Bacterial cell cultures were transformed with the respective constructs and grown to the mid-log phase of growth from a seeding culture. The cultures were excited at 514 nm and emission intensity was detected at 528 nm using a Jasco FP-6300 spectrofluorometer. Activation of the riboswitch can be seen in the presence of theophylline. The presence of the CheZ gene may confer some structural stability that enhances the activation when compared to the construct with venus alone. The activation seen may be sufficient to restore motility in CheZ deficient *E. coli* cells.

Fluorescence Microscopy

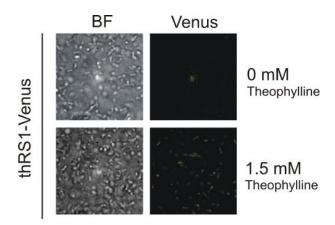


Figure 5: *E.coli* CheZ mutants which were transformed with the Promoter-ThRS1-venus-DoubleTerminator construct in pSB1A3 plasmid backbone. (BBa_537009)). The brightfield images in the left column depict all bacterial cells in the field. The venus images in the right column depict bacterial cells which emitted fluorescence. In the absence of theophylline, almost no fluorescence occurred. Upon the addition of theophylline at a concentration of 1.5mM, many of the cells emitted fluorescence showing activation of the theophylline riboswitch 1.

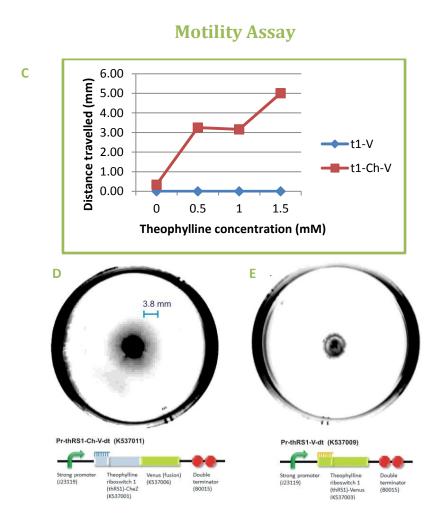


Figure 3. The distance travelled by *E. coli* containing either Promoter-theophylline riboswitch 1-CheZ-Venus-double terminator (BBa_537011) or Promoter-theophylline riboswitch 1-Venus-double terminator (BBa_537009) (C) at different theophylline concentrations over time. The observed trend in C can be seen on semi-solid agar plates containing 1.0mM theophylline with cells transformed with Promoter-theophylline riboswitch 1-CheZ-Venus-double terminator (D) and

Promoter-theophylline riboswitch 1-Venus-double terminator (E), where the halo surrounding the point of inoculum in D is indicative of regained motility.

Chemotaxis Assay

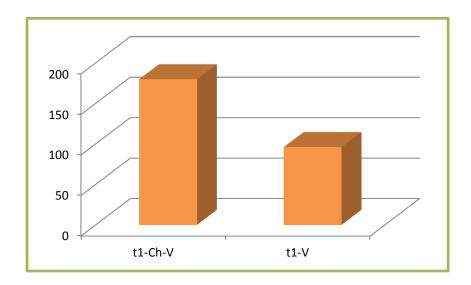


Figure 4. A graph to show the chemotaxis index of *E.* coli transformed with Promoter-theophylline riboswitch 1-CheZ-Venus-double terminator (BBa_537011) (t1-Ch-V) and Promoter-theophylline riboswitch 1-Venus-double terminator (BBa_537009) (t1-V). The chemotaxis index of 100 presented by the Promoter-theophylline riboswitch 1-Venus-double terminator indicates that the same number of bacteria travelled towards 0mM theophylline and 2.0mM theophylline, and as such this transformant shows no attraction towards theophylline. Conversely, the chemotaxis index of 180 displayed by Promoter-theophylline riboswitch 1-CheZ-Venus-double terminator shows more bacteria travelled to 2.0mM theophylline compared with 0mM theophylline strongly indicating chemoattraction towards this chemical.

References

LYNCH, S. A. & GALLIVAN, J. P. 2009. A flow cytometry-based screen for synthetic riboswitches. Nucleic Acids Res, 37, 184-92.