Team:Waterloo/Attributions

From 2011.igem.org


This is a template page. READ THESE INSTRUCTIONS.
You are provided with this team page template with which to start the iGEM season. You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki. You can find some examples HERE.
You MUST have a team description page, a project abstract, a complete project description, a lab notebook, and a safety page. PLEASE keep all of your pages within your teams namespace.



You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing.

Tell us more about your project. Give us background. Use this is the abstract of your project. Be descriptive but concise (1-2 paragraphs)

File:Waterloo team.png
Your team picture
Team Example


Home Team Official Team Profile Project Parts Submitted to the Registry Modeling Notebook Safety Attributions


Attributions & Contributions

Each team must clearly attribute work done by the team on this page. They must distinguish work done by the team from work done by others, including the host labs, advisors, instructors, graduate students, and postgraduate masters students.

References and Other Useful Resources

  • Belfort,M., Cech, T., Celander, D., Chandry, P., Heuer, T. (1991). Folding of group I introns from bacteriophage T4 involves internalization of the catalytic core. Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado. 88(24): 11105–11109.
  • Belfort, M., Chu, F., Maley, F., Maley, G. and West, D. (1986). Characterization of the lntron in the Phage T4 Thymidylate Synthase Gene and Evidence for Its Self-Excision from the Primary Transcript. Wadsworth Center for Laboratories and Research. Vol. 45, X7-166.
  • Bernstein, K.E., Bunting, M., Capecchi, M.R., Greer, J.M., Thomas, K.R. (1999). Targeting genes for self-excision in the germ line.
  • Cassin, P., Gambier, R., Scheppler, J. (2000). Biotechnology Explorations: Applying the Fundamentals. Washington, DC: ASM Press.
  • Cech, T. (1990). Self-Splicing of Group I Introns. Biochemistry 59:543-8.
  • Clancy, S. (2008) RNA splicing: introns, exons and spliceosome. Nature Education 1(1).
  • Glick, B., Pasternak, J., Pattern, C. (2010). Molecular Biotechnology Principles and Applications of Recombinant DNA Fourth Edition. Washington, DC: ASM Press.
  • Goldberg, M., Hartwell, L., Hood, L., Reynolds, A., Silver, L., Veres, R. (2008). Genetics From Genes to Genomes Third Edition. New York: McGraw Hill Companies.
  • Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado. 88(24): 11105–11109.
  • Ikawa, Y., Inoue, T., Ohuchi, S., Shiraishi, H. (2002). Modular engineering of Group I introns ribozyme. Graduate School of Biostudies, Kyoto University. 30(15): 3473-3480.
  • Landthaler, M. and Shub, D. (1999). Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: Introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Microbiology Vol. 96, pp.7005–7010.
  • Minnick, M.F., Raghavan, R. (2009). Group I Introns and Inteins: Disparate Origins but Convergent Parasitic Strategies. Journal of Bacteriology. 191 (20), 6193-6202.