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Chapter 1

Modelling a toggle switch

1.1 Biological models

1.1.1 Basic model

The basic model of a Toggle switch features two transcription ways. After traduction of the ARNm, the proteins
produced in each way repress the promoter of the opposing way. This double repression system ensures the basic
function of a toggle switch : When a way is followed in the first time - in our example, by putting some IPTG
or aTc molecules in the medium - the system will remain stable in the chosen way. It would then require a much
more important concentration of the other protein to switch into the opposing way.

1.1.2 Our model

The biological system we are trying to implement is more complex, on both biological and physical side.
However, the toggle switch model is basically the same. In the study of the toggle switch itself, the system can
be reduced to a simple two-ways subsystem that we will then use for the rest of our modelling. The toggle switch
itself is not influenced by the rest of the system, if we do not consider the rsma regulatory system that will be
modelized at the very end of our work. Thus we will be able to modelize the toggle switch independantly and
then build the rest of the model on this basis.

1.2 Mathematical models

1.2.1 Simple toggle switch model

A common model that can be used for toggle switch modelling is as follow :

d[TetR]
dt

=
α1

1 + [lacI]β
− [TetR] (1.1)

d[lacI]
dt

=
α2

1 + [TetR]γ
− [lacI] (1.2)

For better understanding of this model we demonstrated it.
The differential equation describing the production of xR is as follow :

d[TetR]
dt

= kplac[Plac avail]− δTetR[TetR]

With [Placavail] being the concentration of available binding sites - i.e. not repressed by lacI molecule.
Placavail is of course related to the total number of promoters plac :

[Plac avail] + [Plac − lacI ] = [Plac total]

with [Plac − lacI ] being the concentration of promoters repressed by lacI.
If we set Kplac = [Plac avail][lacI]

[Plac − lacI ] we get :

[Plac avail] =
[Plac total]
1 + lacI

Kplac

We then try to get [lacI] :
[lacIIPTG] + [lacI] + [lacIplac] = [lacItotal]
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With [lacIIPTG] the concentration of lacI repressed by IPTG and [lacIPlac] the concentration of lacI linked to the
promoter. If we set KlacI − IPTG = [lacI][IPTG]

[lacIIP T G] we get :

[lacI] =
[lacItotal]

1 + [IPTG]
KlacI − IP T G

Which finally gives us our differential equation for TetR :

d[TetR]
dt

=
kplac[Plac total]

1 + ( [lacI]

KP1(1+
[IP T G]

KlacI − IP T G) )
)nplac

− δTetR[TetR] (1.3)

With similar calculation we get the differential equation for lacI :

d[lacI]
dt

=
kpTet[PTet total]

1 + ( [TetR]

KpT et(1+
[aT c]

KT etR−aT c
)
)npT et

− δlacI [lacI] (1.4)

These two equations can be easily computed with a differential solver. With this model we can get a good model
of our system with good knowledge of all the factors. We can precisely estimate the effects of each parameter.
We get a similar equation to the usual model.
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Chapter 2

Quorum Sensing Modelling - Through
Space and Time

2.1 Mathematical models

2.1.1 Bangalore 2007 models

Our work mainly refers to the models set up by the 2007 iGem Bangalore team. On the basis of their work we set
up models adapted to our own system.
The main difference between our models is that their model is designed for a whole medium, in which the concen-
trations of quorum sensing molecules are considered for a whole fixed volume of a medium. Our system, however, is
supposed to describe the spacial diffusion of quorum sensing molecules as well, and therefore needs to be designed
for an infinitesimal volume of medium containing bacteries and outside medium.
A few other differences exist between our model and theirs, mainly due to the fact that the system we intend to
describe is made of other different parts. For example the production rate of our Quorum Sensing enzymes are
directly linked to the previously described toggle switch model.

For these reasons we strongly recommend getting familiar with the works of the 2007 Bangalore team for an
easier understanding of the models we used.

2.1.2 Our Models

Bangalore 07 modelized the behaviour of quorum sensing for a simple quorum sensing system. With the input of
the toggle switch model taken into account, we can adapt their equations to our system.

Equations for cinI and cinR

With our toggle switch system the production would be ruled by the regulatory network of lacI and TetR :

d[cinI]
dt

=
kpTet[PTet total]

1 + ( [TetR]

KpT et(1+
[aT c]

KT etR−aT c
)
)npT et

− δcinI [cinI] (2.1)

d[cinR]
dt

=
kplac[Plac total]

1 + ( [lacI]

KP1(1+
[IP T G]

KlacI − IP T G) )
nplac

− δcinR[cinR]− Vcomplexation (2.2)

We can therefore describe the production of cinI and cinR inside the cells. Vcomplexation is the rate of complexation
of the cinR molecule in terms of concentration. As a matter of fact cinR will be transformed into cinR* after being
complexed with the Quorum Sensing molecules entering the cell. It is now taken into account via this complexation
rate.
A simple way to write this rate would be as follow :

Vcomplexation = kcompQ
n
i [cinR]

with Qi being the concentration in QS molecule inside the cell. If we consider that only one QS molecule would
bind to a cinR molecule, we obtain the following equation for cinR :

d[cinR]
dt

=
kpTet[PTet total]

1 + ( [TetR]

KpT et(1+
[aT c]

KT etR−aT c
)
)npT et

− δcinR[cinR]− kcompQi[cinR] (2.3)
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Equations for Quorum sensing molecules inside and outside the cells

For the following equations the physical volume considered is an infinitesimal volume of medium along x - i.e. we
only consider an l ∗ dx volume of cell, l being the width of our plate and dx an infinitesimal portion of length.
In this infinitesimal volume we set a fixed number of non-growing cells and take into account the diffusion from
one portion to the next ones.

d[Qi]
dt

= η([Qe]− [Qi])− δQi[Qi] + f([cinI]) (2.4)

d[Qe]
dt

= ρvcη([Qi]− [Qe])− δQe[Qe] +Ddiff
∂2[Qe]
∂x2

(2.5)

• With f([cinI]) being a mathematical function describing the production of QS molecule by cinI enzyme.
Basically this fonction would be as follow :

f([cinI]) = kQSp[substrate]n[cinI]

But if we consider the reaction as Michaelian, from equation (3.4) we obtain :

d[Qi]
dt

= η([Qe]− [Qi])− δQi[Qi] + k′QSp[cinI] (2.6)

• With Ddiff being the diffusion coefficient for our Quorum sensing molecule in our medium along spatial
dimension x.

• In our case ρvc is a constant (we consider the cells do not grow in our time scale)

With the equations set (3.1); (3.3); (3.5); (3.6) we have, we can not use solvers like matlab ODE because of
their space and time dependancies. To solve our problem we have to use a space-time derivation matrix we will
describe in the next chapter.

2.2 Solvation ot the set of equations (3.1); (3.3); (3.5); (3.6)

2.2.1 The Matrix

To solve this set of equations we have to use a matrix that will describe our system in both space and time. for
example for the QS molecule outside of the cell :

MQe(m,n) = [Qe](x, t)

MQe(m+ 1, n+ 1) = [Qe](x+ dx, t+ dt)

MQe =



0 · · · 0
Qe(0, dt) · · · Qe(L, dt)

. . .
... Qe(m× dx, n× dt)

...
. . .

Qe(0, T ) · · · Qe(L, T )


• On the spatial point of view, we only consider the x dimension, as the IPTG gradient will be only evolving

along this dimension. Thus we consider the state of our cells is the same along the width of our plate.

• With this Matrix, and after computation of all the terms, we can get the entire behaviour of cinI, cinR, QS
inside and outside the cells.

• The first line of the Matrix equals 0. These are the initial conditions we set to 0 at time t = 0s.

• On the borders of the plate (x = 0 and x = L) the model used has to be different, limit conditions will be
set.

• Of course, Qi, cinI and cinR matrices will be similarly implemented.
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2.2.2 Discretization of the equations set

With our continuous equations set, we want to obtain discrete definition of each of the matrices. The interdepen-
dancies of the equations imply that the computation of the matrices will be performed on the entire cinI matrix
first, then each line of the Qi and Qe matrices will be computed alternatively. Finally cinR matrix computation
will be performed.
Parallel computation of all the matrices without proper control is not possible indeed, as the terms of Qi matrix
will depend on the Qe terms of the preceding line (and vice-versa).
Discretization is obtained with first order taylor series :

MQi(m,n+ 1) = ∆t(η(MQe(m,n)−MQi(m,n))− δQiMQi(m,n) + kQSpMcinI(m,n)) + MQi(m,n)
(2.7)

MQe(m,n+ 1) = ∆t(Dm +Ddiff
MQe(m+ 1, n)− 2MQe(m,n) + MQe(m− 1, n)

∆x2
) + MQe(m,n)

(2.8)
with Dm = ρvcηMQi(m,n)−MQe(m,n)(δQe + ρvcη)

McinR(m,n+ 1) = ∆t(
kpTet[PTet total]

1 + ( [TetR]

KpT et(1+
[aT c]

KT etR−aT c
)
)npT et

−McinR(m,n)(δcinR − kcompMQi(m,n))) + McinR(m,n)

(2.9)

With these discrete equations the 4 matrices can be computed through simple calculation loops over each line.
The cinI matrix does not depend on space dimension, it is then possible to compute it without discretization with
a differential solver.

5


	Modelling a toggle switch
	Biological models
	Basic model
	Our model

	Mathematical models
	Simple toggle switch model


	Quorum Sensing Modelling - Through Space and Time
	Mathematical models
	Bangalore 2007 models
	Our Models

	Solvation ot the set of equations (3.1);(3.3);(3.5);(3.6)
	The Matrix
	Discretization of the equations set



